Raining feral cats and dogs? Implications for the conservation of medium-sized wild mammals in an urban protected area

Abstract

Mammals are one of the most negatively affected groups by urbanization, nevertheless, urban reserves can help their conservation. The study of wildlife within the reserves is important for the persistence of these populations, but stressors factors as feral fauna might endanger the conservation of wildlife. Therefore, our objective was to analyze the patterns of temporal and spatial activity of wild and feral mammals within the San Angel Pedregal Ecological Reserve, UNAM, Mexico City, using trap cameras. We found five species of wild mammals and two feral ones. All mammals were primarily nocturnal, except for the Rock Squirrel which changes their behavior in comparison with individuals in natural habitats. All wildlife species showed a high temporal overlap of activity with feral fauna particularly, Rock Squirrel, Eastern Cottontail, and Gray Fox. The analysis of spatial co-occurrence showed that the probability of an encounter between species at a certain point of the reservation is random. Although, due to the reduced area of the reserve, species may overlap spatially. In general, our results indicate that feral fauna has a high overlap of activity with wildlife, however, the studied reserve protects wildlife populations. Therefore, to reduce this overlap, we recommend creating a dog and cat management program for urban protected areas and surrounding areas. Particularly in REPSA, we encourage to continue with the control program of feral species in the long term and change the management of waste within the UNAM.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andersson E (2018) Functional landscapes in cities: a systems approach. Landsc Ecol Eng 14:193–199. https://doi.org/10.1007/s11355-017-0346-6

    Article  Google Scholar 

  2. Baker PJ, Dowding CV, Molony SE et al (2007) Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav Ecol 18:716–724. https://doi.org/10.1093/beheco/arm035

    Article  Google Scholar 

  3. Bateman PW, Fleming PA (2012) Big city life: carnivores in urban environments. J Zool 287:1–23. https://doi.org/10.1111/j.1469-7998.2011.00887.x

    Article  Google Scholar 

  4. Bowers N, Bowers R, Kaufman K (2004) Field guide to mammals of North America. Hillstar Editions L. C, New York

    Google Scholar 

  5. Burton AC, Neilson E, Moreira D et al (2015) Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J Appl Ecol 52:675–685. https://doi.org/10.1111/1365-2664.12432

    Article  Google Scholar 

  6. Campos CB, Esteves CF, Ferraz KMPMB et al (2007) Diet of free-ranging cats and dogs in a suburban and rural environment, South-Eastern Brazil. J Zool 273:14–20. https://doi.org/10.1111/j.1469-7998.2007.00291.x

    Article  Google Scholar 

  7. Castellanos-Morales G, García-Peña N, List R (2008) Uso de recursos del cacomixtle Bassariscus astutus en una reserva urbana de la ciudad de México. In: Lorenzo C, Espinoza E, Ortega J (eds) Avances en el Estudio de los Mamíferos de México, 1st edn. Asociación Mexicana de Mastozoología. AC, Ciudad de México, pp 377–390

    Google Scholar 

  8. Castellanos-Morales GM, García-Peña N, List R (2009) Ecología del cacomixtle (Bassariscus astutus) y la zorra gris (Urocyon cinereoargenteus). In: Biodiversidad del ecosistema del Pedregal de San Ángel. pp 371–381

  9. Castro-Arellano I, Lacher TE, Willig MR, Rangel TF (2010) Assessment of assemblage-wide temporal-niche segregation using null models. Methods Ecol Evol 1:311–318

    Google Scholar 

  10. Coleman JS, Temple SA, Craven SR (1997) Cats and Wildlife: a conservation dilemma

  11. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. http://viceroy.eeb.uconn.edu/estimates/

  12. Coronel-Arellano H, Lara-Díaz NE, Jiménez-Maldonado RE, López-González CA (2016) Species richness and conservation status of medium and large terrestrial mammals from four Sky Islands in Sonora, northwestern Mexico. Checkl thr J Biodivers Data 12:1–12

    Google Scholar 

  13. Coronel-Arellano H, Lara-DÍaz NE, Moreno CE et al (2018) Biodiversity conservation in the Madrean sky islands: community homogeneity of medium and large mammals in northwestern Mexico. J Mammal 99. https://doi.org/10.1093/jmammal/gyx151

  14. Cruz-Reyes A (2009) Fauna feral , fauna nociva y zoonosis. In: Lot A, Cano-Zantana Z (eds) Biodiversidad del ecosistema del Pedregal de San Ángel. Universidad Nacional Autónoma de México, Ciudad de México, pp 453–461

    Google Scholar 

  15. de Andrade Silva KVK, Kenup CF, Kreischer C et al (2018) Who let the dogs out? Occurrence, population size and daily activity of domestic dogs in an urban Atlantic Forest reserve. Perspect Ecol Conserv 16:228–233. https://doi.org/10.1016/j.pecon.2018.09.001

    Article  Google Scholar 

  16. Ditmer MA, Rettler SJ, Fieberg JR et al (2018) American black bears perceive the risks of crossing roads. Behav Ecol 29:667–675. https://doi.org/10.1093/beheco/ary020

    Article  Google Scholar 

  17. Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR (2016) Invasive predators and global biodiversity loss. Proc Natl Acad Sci U S A 113:11261–11265. https://doi.org/10.1073/pnas.1602480113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Doherty TS, Dickman CR, Glen AS et al (2017) The global impacts of domestic dogs on threatened vertebrates. Biol Conserv 210:56–59. https://doi.org/10.1016/j.biocon.2017.04.007

    Article  Google Scholar 

  19. Dowding CV, Harris S, Poulton S, Baker PJ (2010) Nocturnal ranging behaviour of urban hedgehogs, Erinaceus europaeus, in relation to risk and reward. Anim Behav 80:13–21

    Article  Google Scholar 

  20. Farías V, Fuller TK, Sauvajot RM (2012) Activity and distribution of gray foxes (Urocyon cinereoargenteus) in Southnern Californa. Southwest Nat 57:176–181

    Article  Google Scholar 

  21. Feinsinger P, Spears EE, Poole RW (1981) A simple measure of niche breadth. Ecology 62:27–32

    Article  Google Scholar 

  22. Fischer JD, Cleeton SH, Lyons TP, Miller JR (2012) Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience 62:809–818. https://doi.org/10.1525/bio.2012.62.9.6

    Article  Google Scholar 

  23. Foster VC, Sarmento P, Sollmann R et al (2013) Jaguar and Puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45:373–379. https://doi.org/10.1111/btp.12021

    Article  Google Scholar 

  24. Fox MW, Beck AM, Blackman E (1975) Behavior and ecology of a small group of urban dogs (Canis familiaris). Appl Anim Ethol 1:119–137. https://doi.org/10.1016/0304-3762(75)90082-6

    Article  Google Scholar 

  25. George SL, Crooks KR (2006) Recreation and large mammal activity in an urban nature reserve. Biol Conserv 133:107–117. https://doi.org/10.1016/j.biocon.2006.05.024

    Article  Google Scholar 

  26. Girma Y, Terefe H, Pauleit S, Kindu M (2019) Urban green infrastructure planning in Ethiopia: the case of emerging towns of Oromia special zone surrounding Finfinne. J Urban Manag 8:75–88. https://doi.org/10.1016/j.jum.2018.09.004

    Article  Google Scholar 

  27. Gómez-Ortiz Y, Monroy-Vilchis O, Castro-Arellano I (2019) Temporal coexistence in a carnivore assemblage from central Mexico: temporal-domain dependence. Mammal Res 64:333–342. https://doi.org/10.1007/s13364-019-00415-8

    Article  Google Scholar 

  28. González-Martínez TM, Burgos IH, Mazari-Hiriart M et al (2016) Servicios de regulación. In: Cruz-Angón A, Rivera-Rebolledo JA, Cabrera-Aguirre EG et al (eds) La biodiversidad en la Ciudad de México. CONABIO/SEDEMA, Ciudad de México, pp 127–201

    Google Scholar 

  29. Gotelli NJ, Entsminger GL (2005) EcoSim: null models software for ecology

  30. Granados-Pérez Y (2008) Ecología de mamíferos silvestres y ferales de la Reserva Ecológica “El Pedregal”: hacia una propuesta de manejo. Universidad Nacional Autónoma de México

  31. Hanski I, Simberloff D (1997) The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski I, Gilpin EM (eds) Metapopulation biology ecology. Academic Press, Genetics and Evolution, pp 5–26

    Google Scholar 

  32. Harrison RL (2013) Ringtail (Bassariscus astutus) ecology and behavior in Central New Mexico, USA. West North Am Nat 72:495–506. https://doi.org/10.3398/064.073.0313

    Article  Google Scholar 

  33. Horn JA, Mateus-Pinilla N, Warner RE, Heske EJ (2011) Home range, habitat use, and activity patterns of free-roaming domestic cats. J Wildl Manag 75:1177–1185. https://doi.org/10.1002/jwmg.145

    Article  Google Scholar 

  34. Hortelano-Moncada Y, Cervantes FA, Trejo-Ortiz A (2009) Mamíferos silvestres de la Reserva Ecológica del Pedregal de San Ángel en Ciudad Universitaria. Rev Mex Biodivers 80:507–520. https://doi.org/10.22201/ib.9786073021616e.2019

    Article  Google Scholar 

  35. Hughes J, Macdonald D (2013) A review of the interactions between free-roaming domestic dogs and wildlife. Biol Conserv 157:341–351

    Article  Google Scholar 

  36. Kapfer JM, Kirk RW (2012) Observations of gray foxes ( Urocyon cinereoargenteus ) in a suburban landscape in the Piedmont of North Carolina. Southeast Nat 11:507–516. https://doi.org/10.1656/058.011.0313

    Article  Google Scholar 

  37. Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an urban exploiter? J Biogeogr 34:638–651

    Article  Google Scholar 

  38. Kendal D, Zeeman BJ, Ikin K et al (2017) The importance of small urban reserves for plant conservation. Biol Conserv 213:146–153. https://doi.org/10.1016/j.biocon.2017.07.007

    Article  Google Scholar 

  39. Kolowski JM, Forrester TD (2017) Camera trap placement and the potential for bias due to trails and other features. PLoS One 12:1–20. https://doi.org/10.1371/journal.pone.0186679

    CAS  Article  Google Scholar 

  40. Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. J Zool 284:224–229

    Article  Google Scholar 

  41. Loss SR, Will T, Marra PP (2013) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms2380

    CAS  Article  Google Scholar 

  42. Lot A, Cano-Santana Z (2009) Biodiversidad del ecosistema del Pedregal de San Ángel. Universidad Nacional Autónoma de México, Ciudad de México

    Google Scholar 

  43. Lot A, Pérez-Escobedo M, Gil-Alarcón G et al (2012) La Reserva Ecológica del Pedregal de San Ángel: Atlas De Riesgos. ICYTDF, UNAM, REPSA, Ciudad de México

    Google Scholar 

  44. Lowry H, Lill A, Wong BBM (2013) Behavioural responses of wildlife to urban environments. Biol Rev 88:537–549. https://doi.org/10.1111/brv.12012

    Article  PubMed  Google Scholar 

  45. Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography (Cop) 28:403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x

    Article  Google Scholar 

  46. May SA, Norton TW (1996) Influence of fragmentation and disturbance on the potential impact of feral predators on native fauna in Australian forest ecosystems. Wildl Res 23:387–400. https://doi.org/10.1071/WR9960387

    Article  Google Scholar 

  47. Mccarthy S (2005) Managing impacts of domestic cats in peri-urban reserves. In: Urban Animal Management. pp 103–109

  48. Mella-Méndez I, Flores-Peredo R, Pérez-Torres J, Hernández-González S, González-Uribe DU, Socorro Bolívar-Cimé B (2019) Activity patterns and temporal niche partitioning of dogs and medium-sized wild mammals in urban parks of Xalapa. Mexico Urban Ecosyst 22:1061–1070. https://doi.org/10.1007/s11252-019-00878-2

    Article  Google Scholar 

  49. Meredith M, Ridout MS (2014) overlap: Estimates of coefficient of overlapping for animal activity patterns. http://CRAN.R-project.org/package=overlap

  50. Murray MH, St. Clair CC (2015) Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behav Ecol 26:1520–1527. https://doi.org/10.1093/beheco/arv102

    Article  Google Scholar 

  51. Nava-Escudero C (2015) Debates jurídicos-ambientales sobre los derechos de los animales. El caso de tlacuaches y cacomixtles versus perros y gatos en la Reserva Ecológica del Pedregal de San Ángel. Instituto de Investigaciones Jurídicas (UNAM), Ciudad de México

    Google Scholar 

  52. Negrete A, Soberón J (1994) Los mamíferos silvestres de la Reserva Ecológica El Pedregal. In: Rojo A (ed) Reserva Ecológica el Pedregal de San Angel, ecología, historia natural y manejo. Universidad Nacional Autónoma de México, pp 219–228

  53. Nichols JD, Connell AFO, Karanth KU (2011) Camera traps in animal ecology, 1st edn. Springer, New York

  54. Nix JH, Howell RG, Hall LK, McMillan BR (2018) The influence of periodic increases of human activity on crepuscular and nocturnal mammals: testing the weekend effect. Behav Process 146:16–21. https://doi.org/10.1016/j.beproc.2017.11.002

    Article  Google Scholar 

  55. NoticierosTelevisa (2019) No era mapache, era cacomixtle, el animal que entró a banco en CDMX. https://noticieros.televisa.com/ultimas-noticias/mapache-cacomixtle-animal-entro-banco-cdmx/. Accessed 31 March 2019

  56. Parsons AW, Bland C, Forrester T et al (2016) The ecological impact of humans and dogs on wildlife in protected areas in eastern North America. Biol Conserv 203:75–88. https://doi.org/10.1016/j.biocon.2016.09.001

    Article  Google Scholar 

  57. Parsons MH, Banks PB, Deutsch MA, Munshi-South J (2018) Temporal and space-use changes by rats in response to predation by feral cats in an urban ecosystem. Front Ecol Evol 6:1–8. https://doi.org/10.3389/fevo.2018.00146

    Article  Google Scholar 

  58. Patten MA, Burger JC (2018) Reserves as double-edged sword: avoidance behavior in an urban-adjacent wildland. Biol Conserv 218:233–239. https://doi.org/10.1016/j.biocon.2017.12.033

    Article  Google Scholar 

  59. Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74

    Article  Google Scholar 

  60. Porfirio G, Sarmento P, Xavier Filho NL et al (2014) List Medium to large size mammals of southern Serra do Amolar , Mato Grosso do Sul, Brazilian Pantanal. Check List 10:473–482. https://doi.org/10.15560/10.3.473

    Article  Google Scholar 

  61. R Development Core Team, R Core Team (2017) R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria 0:http://www.r-project.org/

  62. Ramírez-Velázquez KJ (2017) Caso clínico: monitoreo y captura de perros ferales en la Zona Núcleo Sur Oriente de la Reserva Ecológica del Pedregal de San Ángel. Universidad Nacional Autónoma de México, Ciudad de México

    Google Scholar 

  63. Ramos-Rendón AK (2010) Evaluación poblacional de mamíferos medianos en la Reserva Ecológica del Pedregal de San Ángel, hacia un programa de control de gatos ferales. Universidad Nacional Autónoma de México, Ciudad de México

    Google Scholar 

  64. Reed AW, Slade NA (2008) Density-dependent recruitment in grassland small mammals. J Anim Ecol 77:57–65. https://doi.org/10.1111/j.1365-2656.2007.01327.x

    Article  PubMed  Google Scholar 

  65. Reid FA (1997) A field guide to the mammals of Central America and Southeast Mexico. Oxford University Press, New York

    Google Scholar 

  66. Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat 14:322–337

    Article  Google Scholar 

  67. Riem JG, Blair RB, Pennington DN, Solomon NG (2012) Estimating mammalian species diversity across an urban gradient. Am Midl Nat 168:315–332. https://doi.org/10.1674/0003-0031-168.2.315

    Article  Google Scholar 

  68. Riley SPD (2006) Spatial ecology of bobcats and gray foxes in urban and rural zones of a National Park. J Wildl Manag 70:1425–1435

    Article  Google Scholar 

  69. Rojo A, Rodriguez J (2002) La flora del Pedregal de San Ángel, 2nd edn. Secretaria de Medio Ambiente y Recursos Naturales/Instituto Nacional de Ecología, Ciudad de México

    Google Scholar 

  70. Santini L, González-Suárez M, Russo D, Gonzalez-Voyer A, von Hardenberg A, Ancillotto L (2019) One strategy does not fit all: determinants of urban adaptation in mammals. Ecol Lett 22:365–376. https://doi.org/10.1111/ele.13199

    Article  PubMed  Google Scholar 

  71. Secretaria Ejecutiva del Pedregal de San Ángel (2018) Reserva Ecológica del Pedregal de San Ángel. In: http://www.repsa.unam.mx/index.php/objetivos/caracteristicas/matorral-de-palo-loco

  72. Si X, Kays R, Ding P (2014) How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2:e374. https://doi.org/10.7717/peerj.374

    Article  PubMed  PubMed Central  Google Scholar 

  73. Siebe C (2000) Age and archaeological implications of Xitle volcano, southwestern basin of Mexico-City. J Volcanol Geotherm Res 104:45–64. https://doi.org/10.1016/S0377-0273(00)00199-2

    CAS  Article  Google Scholar 

  74. Silva-Rodríguez EA, Sieving KE (2012) Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol Conserv 150:103–110. https://doi.org/10.1016/j.biocon.2012.03.008

    Article  Google Scholar 

  75. Suzan G, Ceballos G (2005) The role of feral mammals on wildlife infectious disease prevalence in two nature reserves within Mexico city limits. J Zoo Wildl Med 36:479–484. https://doi.org/10.1638/04-078.1

    Article  PubMed  Google Scholar 

  76. Swan M, Di Stefano J, Christie F et al (2014) Detecting mammals in heterogeneous landscapes: implications for biodiversity monitoring and management. Biodivers Conserv 23:343–355. https://doi.org/10.1007/s10531-013-0604-3

    Article  Google Scholar 

  77. Taylor-Brown A, Booth R, Gillett A, Mealy E, Ogbourne SM, Polkinghorne A, Conroy GC (2019) The impact of human activities on Australian wildlife. PLoS One 14:e0206958. https://doi.org/10.1371/journal.pone.0206958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Tobler MW, Carrillo-Percastegui SE, Leite Pitman R et al (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178. https://doi.org/10.1111/j.1469-1795.2008.00169.x

    Article  Google Scholar 

  79. van de Kerk M, de Kroon H, Conde DA, Jongejans E (2013) Carnivora population dynamics are as slow and as fast as those of other mammals: implications for their conservation. PLoS One 8. https://doi.org/10.1371/journal.pone.0070354

  80. Vanak AT, Gompper ME (2009) Dogs canis familiaris as carnivores: their role and function in intraguild competition. Mammal Rev 39:265–283. https://doi.org/10.1111/j.1365-2907.2009.00148.x

    Article  Google Scholar 

  81. Villalobos Escalante A, Buenrostro-Silva A, Sánchez-de la Vega G (2014) Dieta de la zorra gris Urocyon cinereoargenteus y su contribución a la dispersión de semillas en la costa de Oaxaca, México. Therya 5:355–363. https://doi.org/10.12933/therya-14-143

    Article  Google Scholar 

  82. Villatoro FJ, Naughton-Treves L, Sepúlveda MA, Stowhas P, Mardones FO, Silva-Rodríguez EA (2019) When free-ranging dogs threaten wildlife: public attitudes toward management strategies in southern Chile. J Environ Manag 229:67–75. https://doi.org/10.1016/j.jenvman.2018.06.035

    Article  Google Scholar 

  83. Wang Y, Fisher DO (2012) Dingoes affect activity of feral cats, but do not exclude them from the habitat of an endangered macropod. Wildl Res 39:611–620. https://doi.org/10.1071/WR11210

    Article  Google Scholar 

  84. Wang Y, Allen ML, Wilmers CC (2015) Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol Conserv 190:23–33

    Article  Google Scholar 

  85. Watts CH, Larivière MC (2004) The importance of urban reserves for conserving beetle communities: a case study from New Zealand. J Insect Conserv 8:47–58. https://doi.org/10.1023/B:JICO.0000027504.92727.ab

    Article  Google Scholar 

  86. Woodroffe R (2000) Predators and people: using human densities to interpret declines of large carnivores. Anim Conserv 3:165–173. https://doi.org/10.1017/S136794300000086X

    Article  Google Scholar 

  87. Young JK, Olson KA, Reading RP et al (2011) Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61:125–132. https://doi.org/10.1525/bio.2011.61.2.7

    Article  Google Scholar 

  88. Young PJ (1979) Summer activity patterns of rock squirrels in Central Texas. Dissertation, Texas Tech University

  89. Zanin M, Bergamaschi CL, Ferreira JR et al (2019) Dog days are just starting: the ecology invasion of free-ranging dogs (Canis familiaris) in a protected area of the Atlantic Forest. Eur J Wildl Res 65. https://doi.org/10.1007/s10344-019-1303-5

  90. Zapata-Ríos G, Branch LC (2016) Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol Conserv 193:9–16. https://doi.org/10.1016/j.biocon.2015.10.016

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by UNAM-PAPIIT IV200117/AV200117. REPSA. Thanks to Alejandro González, Zaira González, Cristóbal Pérez, Pablo Arenas, volunteers, social services, and veterinarians that help in field and database work. We would like to thank Nalleli E. Lara-Díaz for her assistance on non-parametric kernel density estimation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis Zambrano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coronel-Arellano, H., Rocha-Ortega, M., Gual-Sill, F. et al. Raining feral cats and dogs? Implications for the conservation of medium-sized wild mammals in an urban protected area. Urban Ecosyst (2020). https://doi.org/10.1007/s11252-020-00991-7

Download citation

Keywords

  • Activity patterns
  • REPSA
  • Pedregal ecosystem
  • Urban reserves
  • Overlap
  • Mesopredators