Association of ionophores, yeast, and bacterial probiotics alters the abundance of ruminal microbial species of pasture intensively finished beef cattle

Abstract

The effect of the association of non-protein nitrogen, yeast, and bacterial probiotics on the ruminal microbiome of beef cattle intensively finished on pasture was evaluated. The experiment was carried out in a completely randomized design with five treatments and four replications. The treatments consisted of a group of animals kept on pasture that received low consumption supplementation (LS) and four groups that received for 98 days, 17.5 g concentrate kg−1 body weight. The supplements were composed of the association of additives: urea (U), slow-release non-protein nitrogen (U+SRN), yeast (Saccharomyces cerevisiae; U+SRN+Y), and bacterial probiotics (live strains of bacteria; U+SRN+Y+BP). All supplements also contained salinomycin and virginiamycin. After slaughtering the animals, samples of ruminal content were collected to quantify groups of fibrolytic bacteria (Ruminococcus albus and Fibrobacter succinogenes), non-fibrolytic (Prevotella ruminicola, Selenomonas ruminantium, and Streptococcus bovis), Archaea, and ciliate protozoa, using the qPCR technique. The abundance of F. succinogenes was the same for the LS animals and those that received the supplement U+SRN+Y (1.42×108 copies mL−1) but higher than the other treatments. Supplementation reduced by 90% the abundance of S. bovis compared to the LS. The inclusion of yeast increased the abundance of fibrolytic bacteria by 2.2-fold. For animals that received the supplement U+SRN+Y+BP and the LS, there was no difference for non-fibrolytic bacteria (3.07×109 copies mL−1). The use of yeasts and sources of non-protein nitrogen in high-concentrate diets for beef cattle stimulates the growth of fibrolytic bacteria, which can contribute to the reduction of digestive disorders and metabolic diseases in animals that receive diets with high concentrate in pasture intensive termination systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alvares, C.A., Stape, J.L., Sentelhas, P.C., De Moraes Gonçalves, J.L. and Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711–728

  2. AlZahal, O., Li, F., Guan, L.L., Walker, N.D. and McBride, B.W., 2017. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast. Journal of Dairy Science, 100, 4377–4393 (American Dairy Science Association)

  3. AOAC, 2000. Official Methods of Analysis, 15th ed. (Arlington)

  4. AOAC, 2005. Official Procedure Am 5-04, Rapid determination of oil/fat utilizing high temperature solvent extraction. American Oil Chemists Society, Urbana, IL.

    Google Scholar 

  5. Arthington, J.D., Roka, F.M., Mullahey, J.J., Coleman, S.W., Muchovej, R.M., Lollis, L.O. and Hitchcock, D., 2007. Integrating ranch forage production, cattle performance, and economics in ranch management systems for southern Florida. Rangeland Ecology and Management, 60, 12–18 (Elsevier Masson SAS)

  6. Bekele, A.Z., Koike, S. and Kobayashi, Y., 2010. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiology Letters, 305, 49–57

  7. Callaway, E.S. and Martin, S.A., 1997. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Journal of Dairy Science, 80, 2035–2044 (Elsevier)

  8. Casali, A.O., Detmann, E., Valadares Filho, S.D.C., Pereira, J.C., Henriques, L.T., Freitas, S.G. de and Paulino, M.F., 2008. Influência do tempo de incubação e do tamanho de partículas sobre os teores de compostos indigestíveis em alimentos e fezes bovinas obtidos por procedimentos in situ. Revista Brasileira de Zootecnia, 37, 335–342

  9. Chaucheyras-Durand, F., Ameilbonne, A., Bichat, A., Mosoni, P., Ossa, F. and Forano, E., 2016. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. Journal of Applied Microbiology, 120, 560–570

  10. Chaucheyras-Durand, F., Chevaux, E., Martin, C. and Forano, E., 2012. Use of yeast probiotics in ruminants: effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet In: Probiotic in Animals, (Everlon Rigobelo), 119–162

  11. Cherdthong, A. and Wanapat, M., 2010. Development of urea products as rumen slow-release feed for ruminant production: A review. Australian Journal of Basic and Applied Sciences, 4, 2232–2241

  12. de Oliveira, A.A., Tilemahos Zervoudakis, J., Hatamoto-Zervoudakis, L.K., da Silva Cabral, L., da Silva-Marques, R.P., Koscheck, J.F.W., Guedes de Carvalho, D.M., Benatti, J.M.B. and Alonso, M.K., 2015. Roasted soybean supplements for finishing beef cattle on Brachiaria brizantha pasture. Tropical Animal Health and Production, 47, 1233–1239

    Article  Google Scholar 

  13. Embrapa, 2017. Estação meteorológica. https://www.embrapa.br/agrossilvipastoril/estacao-meteorologica. Access in 20 January 2017.

  14. Euclides, V.P.B., Montagner, D.B., Barbosa, R.A. and Nantes, N.N., 2014. Manejo do pastejo de cultivares de Brachiaria brizantha (Hochst) Stapf e de Panicum maximum Jacq. Revista Ceres, 61, 808–818

    Article  Google Scholar 

  15. Hammer, Ø., Harper, D.A.. and Ryan, P.D., 2001. PAST: Paleontological Statistics software package for education and data analysis

    Google Scholar 

  16. Hernández, J., Benedito, J.L., Abuelo, A. and Castillo, C., 2014. Ruminal acidosis in feedlot: From aetiology to prevention. Scientific World Journal, 2014, 1–8

    Google Scholar 

  17. Ítavo, L.C.V., Ítavo, C.C.B.F., Dias, A.M., Franco, G.L., Pereira, L.C., Leal, E.S., Araújo, H.S. and Souza, A.R.D.L., 2016. Combinações de fontes de nitrogênio não proteico em suplementos para novilhos Nelore em pastejo. Revista Brasileira de Saude e Producao Animal, 17, 448–460

    Article  Google Scholar 

  18. López-Soto, M.A., Rivera-Méndez, C.R., Aguilar-Hernández, J.A., Barreras, A., Calderón-Cortés, J.F., Plascencia, A., Dávila-Ramos, H., Estrada-Angulo, A. and Valdes-García, Y.S., 2014. Effects of combining feed grade urea and a slow-release urea product on characteristics of digestion, microbial protein synthesis and digestible energy in steers fed diets with different starch:ADF ratios. Asian-Australasian Journal of Animal Sciences, 27, 187–193

    Article  Google Scholar 

  19. McCann, J.C., Elolimy, A.A. and Loor, J.J., 2017. Rumen microbiome, probiotics, and fermentation additives. Veterinary Clinics of North America: Food Animal Practice, 33, 539–553

    Google Scholar 

  20. Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal of AOAC International, 85, 1217–1240

    CAS  PubMed  Google Scholar 

  21. Morgavi, D.P., Forano, E., Martin, C. and Newbold, C.J., 2010. Microbial ecosystem and methanogenesis in ruminants. Animal, 4, 1024–1036

    CAS  Article  Google Scholar 

  22. Mosoni, P., Chaucheyras-Durand, F., Béra-Maillet, C. and Forano, E., 2007. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: Effect of a yeast additive. Journal of Applied Microbiology, 103, 2676–2685

    CAS  Article  Google Scholar 

  23. Nave, R.L.G., Pedreira, C. and Pedreira, B.C., 2011. Nutritive value and physical characteristics of Xaraes palisadegrass as affected by grazing strategy. South African Journal of Animal Science, 40, 285–293

    Article  Google Scholar 

  24. Newbold, C.J., De la Fuente, G., Belanche, A., Ramos-Morales, E. and McEwan, N.R., 2015. The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6, 1–14

    Article  Google Scholar 

  25. Nour, A.M., Abou Akkada, A.R., el-Shazly, K., Naga, M.A., Borhami, B.E. and Abaza, M.A., 1979. Effect of increased levels of urea in the diet on ruminal protozoal counts in four ruminant species. Journal of animal science, 49, 1300–1305

  26. Ohene-Adjei, S., Chaves, A. V, Mcallister, T.A., Benchaar, C., Teather, R.M. and Forster, R.J., 2008. Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microbiology Ecology, 56, 234–242

  27. Page, S.W., 2003. The role of enteric antibiotics in livestock production, (Canberra, Australia)

    Google Scholar 

  28. Patino, H.O., Medeiros, F.S., Pereira, C.H., Swanson, K.C. and McManus, C., 2015. Productive performance, meat quality and fatty acid profile of steers finished in confinement or supplemented at pasture. Animal, 9, 966–972

    CAS  Article  Google Scholar 

  29. Petri, R.M., Forster, R.J., Yang, W., McKinnon, J.J. and McAllister, T.A., 2012. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. Journal of Applied Microbiology, 112, 1152–1162

    CAS  Article  Google Scholar 

  30. Pinloche, E., McEwan, N., Marden, J.P., Bayourthe, C., Auclair, E. and Newbold, C.J., 2013. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE, 8, 1–10

    Article  Google Scholar 

  31. Ribeiro, C.S., Granja-Salcedo, Y.T., Messana, J.D., Neto, A.J., Canesin, R.C., Fiorentini, G., Alarcon, M.F.F. and Berchielli, T.T., 2015. Feeding increasing concentrate to Tifton 85 hay ratios modulated rumen fermentation and microbiota in Nellore feedlot steers. Journal of Agricultural Science, 153, 1116–1127

    CAS  Article  Google Scholar 

  32. Ricotta, C. and Podani, J., 2017. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity, 31, 201–205 (Elsevier B.V.)

  33. Rodrigues Júnior, C.T., Carneiro, M.S. de S., Magalhães, J.A., Pereira, E.S., Rodrigues, H.B.N., Costa, N. de L., Pinto, M. do S. de C., Andrade, A.C., Pinto, A.P., Fogaça, F.H. dos S. and Castro, K.N. de C., 2015. Produção e composição bromatológica do capim-Marandu em diferentes épocas de diferimento e utilização. Semina: Ciências Agrárias, 36, 2141–2154

  34. Russell, J.B. and Houlihan, A.J., 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews, 27, 65–74

    CAS  Article  Google Scholar 

  35. Shokryazdan, P., Faseleh Jahromi, M., Liang, J.B. and Ho, Y.W., 2017. Probiotics: from isolation to application. Journal of the American College of Nutrition, 36, 666–676 (Taylor & Francis)

  36. Staff, S.S., 2014. Keys to Soil Taxonomy, 12th ed. (Soil Conservation Service. USDA - Natural Resources Conservation Service: Washington, DC)

  37. Stevenson, D.M. and Weimer, P.J., 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR Applied. Microbiology and Biotechnology, 75, 165–174

    CAS  Article  Google Scholar 

  38. Sylvester, J.T., Karnati, S.K.R., Yu, Z., Morrison, M. and Firkins, J.L., 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. The Journal of nutrition, 134, 3378–3384

    CAS  Article  Google Scholar 

  39. Van Soest, P.J. and Robertson, J.B., 1985. Analysis of forages and fibrous foods: a laboratoty manual for animal science, (Cornell University Press: Ithaca, NY)

    Google Scholar 

  40. Wallace, J. and Newbold, C.J., 2007. Microbial feed additives for ruminants. Biotechnology in Animal Feeds and Animal Feeding, 247–258

  41. Weimer, P.J., Stevenson, D.M., Mertens, D.R. and Thomas, E.E., 2008. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Applied Microbiology and Biotechnology, 80, 135–145

    CAS  Article  Google Scholar 

  42. Yang, H.E., Zotti, C.A., McKinnon, J.J. and McAllister, T.A., 2018. Lactobacilli Are prominent members of the microbiota involved in the ruminal digestion of barley and corn. Frontiers in Microbiology, 9, 1–17

    Article  Google Scholar 

  43. Yu, Z., Michel, F.C., Hansen, G., Wittum, T. and Morrison, M., 2005. Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Applied microbiology and biotechnology, 71, 6926–6933

    CAS  Google Scholar 

  44. Zeineldin, M., Barakat, R., Elolimy, A., Salem, A.Z.M., Elghandour, M.M.Y. and Monroy, J.C., 2018. Synergetic action between the rumen microbiota and bovine health. Microbial Pathogenesis, 124, 106–115 (Elsevier Ltd)

  45. Zhang, Xiangfei, Zhang, H., Wang, Z., Zhang, Xiaoming, Zou, H., Tan, C. and Peng, Q., 2015. Effects of dietary carbohydrate composition on rumen fermentation characteristics and microbial population in vitro. Italian Journal of Animal Science, 14, 524–531

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CAPES (Coordination of Improvement of Higher-Level Personnel) for granting a scholarship to the first author and Acrinorte (Association of Northern Mato Grosso’s farmers) for the partnership with the beef cattle used [44.771/14 and 50.168/2017].

Availability of data and material

The authors state that the data are available for consultation.

Code availability

Not applicable.

Funding

This work was supported by Embrapa [grant numbers 02.13.11.001.00.00], Acrimat (Association of Mato Grosso’s farmers), and Fortuna Animal Nutrition.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mircéia Angele Mombach.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Statement of animal rights

The authors confirm that they have followed standards for the protection of animals used for scientific purposes and all procedures performed with animals have been approved and were following the ethical standards of the Biosafety Committee of Embrapa Agrossilvipastoril (Protocol CEUA – No. 008/2015).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mombach, M.A., da Silva Cabral, L., Lima, L.R. et al. Association of ionophores, yeast, and bacterial probiotics alters the abundance of ruminal microbial species of pasture intensively finished beef cattle. Trop Anim Health Prod 53, 172 (2021). https://doi.org/10.1007/s11250-021-02617-2

Download citation

Keywords

  • Fibrolytic bacteria
  • High-concentrate diets
  • Real-time PCR
  • Rumen microbiology
  • Slow-release urea