Precision finishing of South African lambs in feedlots: a review

Abstract

In the intensification of sheep production systems, feedlot finishing plays a fundamental role in preparing lambs for slaughter, as well as relieving the grazing pressure on pasture. The profit margins in feedlot operations are often narrow and require the economics of scale to generate a sufficient income. In order to minimise expenses, intensive management and precision rearing of lambs to an ideal slaughter weight is needed to obtain premium carcass prices. The South African sheep industry is made up of wool, dual-purpose as well as meat type breeds, which also vary in terms of maturity. In order to implement precision finishing of South African lamb, a complete understanding of the growth, intake and fat deposition trends of growing lambs of different breed types is needed. This review outlines feedlot lamb production within the Southern African context for the major commercial breeds, while also providing insight in the considerations necessary to develop a decision support system for lamb rearing. Integrating such a decision support system into a lamb feedlot operation can then be used for precision finishing of lambs by predicting the optimal length of the feeding period and ideal slaughter weights of lambs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Addah, W., Ayantunde, A. Okine, E.K., 2017. Effects of restricted feeding and re-alimentation of dietary protein or energy on compensatory growth of sheep. South African Journal of Animal Science, 47, 389-396.

    CAS  Google Scholar 

  2. Alfonso, M., Sañudo, C., Berge, P., Fisher, A.V., Stamataris, C., Thorkelsson, G., Piasentier, E., 2001. Influential factors in lamb meat quality. Acceptability of specific designations, in: Rubino, R., Morand-Fehr, P., (eds) Production systems and product quality in sheep and goats, pp. 19-28.

  3. Allen, M.S., 1996. Physical constraints on voluntary intake of forages by ruminants. Journal of Animal Science, 74, 3063-3075.

    CAS  PubMed  Article  Google Scholar 

  4. Andargachew, K., Brokken, R.F., 1993. Intra-annual sheep price patterns and factors underlying price variations in the central highlands of Ethiopia. Agricultural Economics, 8, 125-138.

    Google Scholar 

  5. Barnes, A.L., Wickham, S.L., Admiraal, R., Miller, D.W., Collins, T., Stockman, C., Fleming, P.A., 2018. Characterization of inappetent sheep in a feedlot using radio-tracking technology. Journal of Animal Science, 96, 902-911.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Bathaei, S.S., Leroy, P.L., 1996. Growth and mature weight of Mehraban Iranian fat-tailed sheep. Small Ruminant Research, 22, 155-162.

    Article  Google Scholar 

  7. Ben Salem, H., Nefzaoui, A., 2003. Feed blocks as alternative supplements for sheep and goats. Small Ruminant Research, 49, 275-288.

    Article  Google Scholar 

  8. Bello, J.M., Mantecón, A.R., Rodriguez, M., Cuestas, R., Beltran, J.A., Gonzalez, J.M., 2016. Fattening lamb nutrition. Approaches and strategies in feedlot. Small Ruminant Research, 142, 78-82.

    Article  Google Scholar 

  9. Brand, T.S., 2000. Grazing behaviour and diet selection by Dorper sheep. Small Ruminant Research, 36, 147-158.

    CAS  PubMed  Article  Google Scholar 

  10. Brand, T.S., Genis, M.P., Hoffman, L.C., Van De Vyver, W.F.J., Swart, R., Jordaan, G.F., 2013. The effect of dietary energy and the inclusion of a β-adrenergic agonist in the diet on the meat quality of feedlot lambs. South African Journal of Animal Science, 43, 140-145.

    Article  Google Scholar 

  11. Brand, T.S., Van der Westhuizen, E.J., Van der Merwe, D.A., Hoffman, L.C., 2017. Effect of days in feedlot on growth performance and carcass characteristics of Merino, South African Mutton Merino and Dorper lambs. South African Journal of Animal Science, 47, 26-33.

    CAS  Article  Google Scholar 

  12. Brand, T.S., Van Der Westhuizen, E.J., van Der Merwe, D.A., Hoffman, L.C., 2018. Analysis of carcass characteristics and fat deposition of Merino, South African Mutton Merino and Dorper lambs housed in a feedlot. South African Journal of Animal Science, 48, 477-488.

    CAS  Article  Google Scholar 

  13. Brown, D.J., Savage, D.B., Hinch, G.N., Hatcher, S., 2015. Monitoring liveweight in sheep is a valuable management strategy: a review of available technologies. Animal Production Science, 55, 427-436.

    Article  Google Scholar 

  14. Bruwer, G.G., Grobler, I., Smit, M., Naudé, R.T., Vosloo, W.A., 1987a. An evaluation of the lamb and mutton carcase grading system in the Republic of South Africa. 4. The influence of age, carcase mass and fatness on meat quality characteristics. South African Journal of Animal Science, 17, 95-103.

    Google Scholar 

  15. Bruwer, G.G., Naude, R.T., Du Toit, M.M., Cloete, A., Vosloo, W.A., 1987b. An evaluation of the lamb and mutton carcase grading system in the Republic of South Africa. 2. The use of fat measurements as predictors of carcase composition. South African Journal of Animal Science, 17, 85-89.

    Google Scholar 

  16. Bruwer, G.G., Naudé, R.T., Vosloo, W.A., 1987c. An evaluation of the lamb and mutton carcase grading system in the Republic of South Africa. 3. Fatness score, conformation score and carcase mass as predictors of carcase composition. South African Journal of Animal Science, 17, 90-94.

    Google Scholar 

  17. Burger, A., Hoffman, L.C., Cloete, J.J.E., Muller, M., Cloete, S.W.P., 2013. Carcass composition of Namaqua Afrikaner, Dorper and SA Mutton Merino ram lambs reared under extensive conditions. South African Journal of Animal Science, 43, 27-32.

    Article  Google Scholar 

  18. Butterfield, R.M., 1988. New concept of sheep growth. Department of Veterinary Anatomy, University of Sydney. Australia. pp 2-33.

    Google Scholar 

  19. Cannas, A., Tedeschi, L.O., Fox, D.G., Pell, A.N., Van Soest, P.J., 2004. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. Journal of Animal Science, 82, 149-169.

    CAS  PubMed  Article  Google Scholar 

  20. Cloete, J.J E., Hoffman, L.C., Cloete, S.W.P., Fourie, J.E., 2004b. A comparison between the body composition, carcass characteristics and retail cuts of South African Mutton Merino and Dormer sheep. South African Journal of Animal Science, 34, 44-51.

    Google Scholar 

  21. Cloete, J.J.E., Hoffman, L.C., Cloete, S.W.P., 2012. A comparison between slaughter traits and meat quality of various sheep breeds: Wool, dual-purpose and mutton. Meat Science., 91, 318-324.

    CAS  PubMed  Article  Google Scholar 

  22. Cloete, S.W.P., Cloete, J.J.E., Durand, A., Hoffman, L.C., 2003. Production of five Merino type lines in a terminal crossbreeding system with Dormer or Suffolk sires. South African Journal of Animal Science, 33, 223-232.

    Article  Google Scholar 

  23. Cloete, S.W.P., De Villiers, T.T., 1987. Production parameters for a commercial Dorper flock on extensive pastures. South African Journal of Animal Science, 17, 121-127.

    Google Scholar 

  24. Cloete, S.W.P., Olivier, J.J., Olivier, W.J., 2007. Genetic change in South African Merino resource flocks. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 17, 320-323.

    Google Scholar 

  25. Cloete, S.W.P., Olivier, J.J., Sandenbergh, L., Snyman, M.A., 2014. The adaption of the South Africa sheep industry to new trends in animal breeding and genetics: A review. South African Journal of Animal Science, 44, 307-321.

    Article  Google Scholar 

  26. Cloete, S.W.P., Schoeman, S.J., Coetzee, J., Morris, J.D.V., 2001. Genetic variances for liveweight and fleece traits in Merino, Dohne Merino and South African Meat Merino sheep. Australian Journal of Experimental Agriculture, 41, 145-153.

    Article  Google Scholar 

  27. Cloete, S.W.P., Snyman, M.A., Herselman, M.J., 2000. Productive performance of Dorper sheep. Small Ruminant Research, 36, 119-135.

    CAS  PubMed  Article  Google Scholar 

  28. Cloete, S.W.P., Van Wyk, J.B., Neser, F.W.C., 2004a. Estimates of genetic and environmental (co) variances for live weight and fleece traits in yearling South African Mutton Merino sheep. South African Journal of Animal Science, 34, 37-43.

    Google Scholar 

  29. Coetzee, J., 2004. Latest sheep farming practices for maximum profit generation (translated from Afrikaans). Copyright Jasper Coetzee Consulting, pp 230-240.

  30. Dabiri, N., Morris, S.T., Wallentine, M., McCutcheon, S.N., Parker, W.J., Wickham, G.A., 1996. Effects of pre-lamb shearing on feed intake and associated productivity of May-and August-lambing ewes. New Zealand Journal of Agricultural Research, 39, 53-62.

    Article  Google Scholar 

  31. da Silva, L.S.A., Fraga, A.B., da Silva, F.D.L., Beelen, P.M.G., de Oliveira Silva, R.M., Tonhati, H., da Costa Barros, C., 2012. Growth curve in Santa Inês sheep. Small Ruminant Research, 105, 182-185.

    Article  Google Scholar 

  32. Davel, M., Bosman, M.J.C., Webb, E.C., 2003. Effect of electrical stimulation of carcasses from Dorper sheep with two permanent incisors on the consumer acceptance of mutton. South African Journal of Animal Science, 33, 206-212.

    Google Scholar 

  33. De Bruyn, J.F., 1991. Production and product characteristics of different cattle genotypes under feedlot conditions. D.Sc. (Agric) Thesis. University of Pretoria.

  34. Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., Courbois, C., 1999. Livestock to 2020 the next food revolution. Food Agriculture and the Environment Discussion Paper 28, International food policy institute, pp. 1-52.

  35. Della-Fera, M.A., Baile, C.A., 1984. Control of feed intake in sheep. Journal of Animal Science, 59, 1362-1368.

    CAS  PubMed  Article  Google Scholar 

  36. Department of Agriculture, Forestry & Fisheries. 2019. Abstract of Agricultural statistics. DAFF: Directorate statistics and economic analysis, South Africa. pp 61-63. (https://www.daff.gov.za/Portals/0/Statistics%20and%20Economic%20Analysis/Statistical%20Information/Abstract%202019.pdf). Accessed 3 June 2020.

  37. Donnelly, J.R., Freer, M., Salmon, L., Moore, A.D., Simpson, R.J., Dove, H., Bolger, T.P., 2002. Evolution of the GRAZPLAN decision support tools and adoption by the grazing industry in temperate Australia. Agricultural Systems, 74, 115-139.

    Article  Google Scholar 

  38. Du Plessis, J.J., De Wet, P.J., 1981. Nitrogen utilization by sheep. 1. Nitrogen utilization by weaned lambs of a wool, a wool/mutton and a mutton/wool breed for wool and body protein formation. Agroanimalia, 13: 21-27.

    Google Scholar 

  39. Emmans G.C., 1989. Chapter 8 The growth of turkeys. In: Nixey, C., Grey, T.C. (eds), Recent advances in turkey science (Poultry science symposium number 21). By Butterworth and Heineman. Ltd.

  40. Ermias, E., Yami, A., Rege, J.E.O., 2002. Fat deposition in tropical sheep as adaptive attribute to periodic feed fluctuation. Journal of Animal Breeding and Genetics, 119, 235-246.

    Article  Google Scholar 

  41. FAOSTAT. 2019. http://www.fao.org/faostat/en/#data/RL (Accessed 18 October 2019).

  42. Faverdin, P., 1999. The effect of nutrients on feed intake in ruminants. Proceedings of the Nutrition Society, 58, 523-531.

    CAS  PubMed  Article  Google Scholar 

  43. Field, R.A., Snowder, G.D., Maiorano, G., McCormick, R.J., Riley, M.L., 1993. Growth and slaughter characteristics of ram and wether lambs implanted with zeranol. Journal of Animal Science, 71, 631-635.

    CAS  PubMed  Article  Google Scholar 

  44. Finlayson, J.D., Cacho, O.J., Bywater, A.C., 1995. A simulation model of grazing sheep: I. Animal growth and intake. Agricultural Systems, 48, 1-25.

    Article  Google Scholar 

  45. Gerrits, W.J., Tolman, G.H., Schrama, J.W., Tamminga, S., Bosch, M.W., Verstegen, M.W., 1996. Effect of protein and protein-free energy intake on protein and fat deposition rates in preruminant calves of 80 to 240 kg live weight. Journal of Animal Science, 74, 2129-2139.

    CAS  PubMed  Article  Google Scholar 

  46. Goshu, A.T., Koya, P.R., 2013. Derivation of inflection points of nonlinear regression curves-implications to statistics. American Journal of Theoretical and Applied Statistics, 2, 268-272.

    Article  Google Scholar 

  47. Gous, R.M., 2014. Modeling as a research tool in poultry science. Poultry Science, 93, 1-7.

    CAS  PubMed  Article  Google Scholar 

  48. Government Notice No. R. 863 2006. Agricultural product standards Act 119 of 1990. Regulations regarding the classification and marketing of meat in the Republic of South Africa.

  49. Greenhalgh, J.F.D., Reid, G.W., 1973. The effects of pelleting various diets on intake and digestibility in sheep and cattle. Animal Science, 16, 223-233.

    Article  Google Scholar 

  50. Grill, L., Ringdorfer, F., Baumung, R., Fuerst-Waltl, B., 2015. Evaluation of ultrasound scanning to predict carcass composition of Austrian meat sheep. Small Ruminant Research, 123, 260–268.

    Article  Google Scholar 

  51. Halachmi, I., Guarino, M., Bewley, J., Pastell, M., 2019. Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences, 7, 403-425.

    PubMed  Article  Google Scholar 

  52. Hamlin, K.E., Green, R.D., Cundiff, L.V., Wheeler, T.L., Dikeman, M.E., 1995. Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II. Relationship between real-time ultrasound measures and carcass retail yield. Journal of Animal Science, 73, 1725-1734.

    CAS  PubMed  Article  Google Scholar 

  53. Hopkins, D. L., Hall, D. G., Luff, A. F., 1996. Lamb carcass. 3. Describing changes in carcasses of growing lambs using real-time ultrasound and the use of these measurements for estimating the yield of saleable meat. Australian Journal of Experimental Agriculture, 36, 37–43.

    Article  Google Scholar 

  54. Hopkins, D.L., Pirlot, K.L., Roberts, A.H.K. & Beattie, A.S., 1993. Changes in fat depths and muscle dimensions in growing lambs as measured by real-time ultrasound. Australian Journal of Experimental Agriculture, 33, 707-712.

    Article  Google Scholar 

  55. Hopkins, D.L., Stanley, D.F. & Ponnampalam, E.N., 2007. Relationship between real-time ultrasound and carcass measures and composition in heavy sheep. Australian Journal of Experimental Agriculture, 47, 1304–1308.

    Article  Google Scholar 

  56. Illius, A.W., Jessop, N.S., Gill, M., 2000. Mathematical models of food intake and metabolism in ruminants, in: Cronjé P.B., (ed) Ruminant physiology, digestion, metabolism growth and reproduction (). CABI Publishing, Wallingford, 21-40.

    Google Scholar 

  57. Ingvartsen, K.L., 1994. Models of voluntary food intake in cattle. Livestock Production Science, 39, 19-38.

    Article  Google Scholar 

  58. Johnson, I.R., France, J., Thornley, J.H.M., Bell, M.J., Eckard, R.J., 2012. A generic model of growth, energy metabolism, and body composition for cattle and sheep. Journal of Animal Science, 90, 4741-4751.

    CAS  PubMed  Article  Google Scholar 

  59. Kempster, A.J., 1981. Fat partition and distribution in the carcasses of cattle, sheep and pigs: a review. Meat Science, 5, 83-98.

    CAS  PubMed  Article  Google Scholar 

  60. Keskin, I., Dag, B., Sariyel, V., Gokmen, M., 2009. Estimation of growth curve parameters in Konya Merino sheep. South African Journal of Animal Science, 39, 163-168.

    Article  Google Scholar 

  61. Keady, T.W.J., Hanrahan, J.P., 2015. Effects of shearing, forage type and feed value, concentrate feed level, and protein concentration on the performance of housed finishing lambs. Journal of Animal Science, 93, 306-318.

    CAS  PubMed  Article  Google Scholar 

  62. Kleen, J.L., Hooijer, G.A., Rehage, J., Noordhuizen, J.P.T.M., 2003. Subacute ruminal acidosis (SARA): a review. Journal of Veterinary Medicine Series A., 50, 406-414.

    CAS  PubMed  Article  Google Scholar 

  63. Lawrence, T. L. J., Fowler, V. R., Novakofksi J. E. 2012. Growth of farm animals. 2nd edition. CABI. pp. 216-228

  64. Lewis, R.M., Emmans, G.C., 2010. Feed intake of sheep as affected by body weight, breed, sex, and feed composition. Journal of Animal Science, 88, 467-480.

    CAS  PubMed  Article  Google Scholar 

  65. Lewis, R.M., Notter, D.R., Hogue, D.E., Magee, B.H., 1996. Ewe fertility in the STAR accelerated lambing system. Journal of Animal Science, 74, 1511-1522.

    CAS  PubMed  Article  Google Scholar 

  66. Lima, N.L.L., Ribeiro, C.R.D.F., Sá, H.C.M.D., Leopoldino-Júnior, I., Cavalcanti, L.F.L., Santana, R.A.V., Furusho-Garcia, I.F., Pereira, I.G., 2017. Economic analysis, performance, and feed efficiency in feedlot lambs. Revista Brasileira de Zootecnia, 46, 821-829.

    Article  Google Scholar 

  67. Malhado, C., Carneiro P., Affonso P., Souza Jr A., Sarmento J., 2009. Growth curves in Dorper sheep crossed with the local brazilian breeds, Morada nova, Rabo largo, & Santa inês. Small Ruminant Research. 84, 16-21.

    Article  Google Scholar 

  68. Marino, R., Atzori, A.S., D'Andrea, M., Iovane, G., Trabalza-Marinucci, M., Rinaldi, L., 2016. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Ruminant Research, 135, 50-59.

    Article  Google Scholar 

  69. Meissner, H.H., Hofmeyr, H.S., Van Rensburg, W.J.J., Pienaar, J.P., 1983. Classification of livestock for realistic prediction of substitution values in terms of a biologically defined Large Stock Unit. Technical Communication 175. Department of Agriculture, Republic of South Africa.

  70. Meissner, H.H., Scholtz, M.M., Engelbrecht, F.A., 2013. Sustainability of the South African Livestock Sector towards 2050 Part 2: Challenges, changes and required implementations. South African Journal of Animal Science, 43, 289-319.

    Article  Google Scholar 

  71. Milne, C., 2000. The history of the Dorper sheep. Small Ruminant Research, 36, 99-102.

    CAS  PubMed  Article  Google Scholar 

  72. Ministry of Agriculture, Fisheries and Food (MAFF), 1975. Energy allowances and feeding systems for ruminants. Tech Bull. 33, Ministry of Agriculture and Fisheries. Her Majesty’s Stationary Office, London, pp 79.

  73. Mohapatra, A., Shinde, A., 2018. Fat-tailed sheep-an important sheep genetic resource for meat production in tropical countries: an overview. Indian Journal of Small Ruminants, 24, 1-17.

    Article  Google Scholar 

  74. Moreira, R.P., Pedrosa, V.B., Falcão, P.R., de Fátima Sieklicki, M., Rocha, C.G., dos Santos, I.C., Ferreira, E.M., de Souza Martins, A., 2016. Growth curves for Ile de France female sheep raised in feedlot. Semina: Ciências Agrárias, 37, 303-310.

    Google Scholar 

  75. Morgan-Davies, C., Lambe, N., Wishart, H., Waterhouse, T., Kenyon, F., McBean, D., McCracken, D., 2018. Impacts of using a precision livestock system targeted approach in mountain sheep flocks. Livestock Science, 208, 67-76.

    Article  Google Scholar 

  76. Morris, J.E., Cronin, G.M., Bush, R.D., 2012. Improving sheep production and welfare in extensive systems through precision sheep management. Animal Production Science, 52, 665-670.

    Article  Google Scholar 

  77. Najari, S., Gaddoun, A., Hamouda, M.B., Djemali, M., Khaldi, G., 2007. Growth model adjustment of local goat population under pastoral conditions in Tunisian arid zone. Journal of Agronomy, 6, 61-67

    Article  Google Scholar 

  78. National Research Council, 2017. Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. National Academic Press, Washington.

    Google Scholar 

  79. Negussie, E., Rottmann, O.J., Pirchner, F., Rege, J.E.O., 2003. Patterns of growth and partitioning of fat depots in tropical fat-tailed Menz and Horro sheep breeds. Meat Science, 64, 491-498.

    CAS  PubMed  Article  Google Scholar 

  80. Neser, F.W.C., Erasmus, G.J., Van Wyk, J.B., 2000. Genetic studies on the South African Mutton Merino: growth traits. South African Journal of Animal Science, 30, 172-177.

    Article  Google Scholar 

  81. Owens, F.N., Dubeski, P., Hanson, C.F., 1993. Factors that alter the growth and development of ruminants. Journal of Animal Science, 71, 3138-3150.

    CAS  PubMed  Article  Google Scholar 

  82. Pannier, L., Gardner, G.E., Pethick, D.W., 2019. Effect of Merino sheep age on consumer sensory scores, carcass and instrumental meat quality measurements. Animal Production Science, 59, 1349-1359.

    Article  Google Scholar 

  83. Peters, F.W., Kotze, A., Van der Bank F.H., Soma, P., Grobler, J.P., 2010. Genetic profile of the locally developed Meatmaster sheep breed in South Africa based on microsatellite analysis. Small Ruminant Research, 90, 101-108.

    Article  Google Scholar 

  84. Pienaar, G.H., Einkamerer, O.B., Van der Merwe, H.J., Hugo, A., Scholtz, G.D.J., Fair, D.M., 2012. The effects of an active live yeast product on the growth performance of finishing lambs. South African Journal of Animal Science, 42, 464-468.

    Google Scholar 

  85. Price, M.M., Einkamerer, O.B., De Witt, F.H., Greyling, J.P.C., Fair, M.D., 2009. The effect of dietary ionophores on feedlot performance of lambs. South African Journal of Animal Science, 39, 141-144.

    Google Scholar 

  86. Pulina, G., Avondo, M., Molle, G., Francesconi, A.H.D., Atzori, A.S., Cannas, A., 2013. Models for estimating feed intake in small ruminants. Revista Brasileira de Zootecnia., 42, 675-690.

    Article  Google Scholar 

  87. Qwabe, S.O., van Marle-Köster, E., Visser, C., 2013. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep. Tropical Animal Health and Production, 45, 511-516.

    PubMed  Article  Google Scholar 

  88. Red Meat Producers Organisation, 2019. (http://www.rpo.co.za/information-centre/absa/weekly-prices/) Accessed 1 September 2019.

  89. Rust, J.M., Rust, T., 2013. Climate change and livestock production: A review with emphasis on Africa. South African Journal of Animal Science, 43, 255-267.

    Article  Google Scholar 

  90. Sandenbergh, L., Cloete, S.W.P. Olivier, J.J., 2018, Assessing the occurrence of hybridisation in endangered indigenous sheep. In Proc. of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand (pp. 11-16).

  91. Schoeman, S.J., Cloete, S.W.P., Olivier, J.J., 2010. Returns on investment in sheep and goat breeding in South Africa. Livestock Science, 130, 70-82.

    Article  Google Scholar 

  92. Schönfeldt, H.C., Naude, R.T., Bok, W., Van Heerden, S.M., Smit, R., Boshoff, E., 1993. Flavour-and tenderness-related quality characteristics of goat and sheep meat. Meat Science, 34, 363-379.

    PubMed  Article  Google Scholar 

  93. Schönfeldt, H.C., Van Heerden, S.M., Sainsbury, J., Gibson, N., 2011. Nutrient content of uncooked and cooked meat from South African classes A2 lamb and C2 mutton. South African Journal of Animal Science, 41, 141-145.

    Article  Google Scholar 

  94. Scott, J.T., Broadbent, E.E., 1972. A computerized cattle feeding program for replacement and ration formulation. Illinois Agricultural Economics, 12, 16-25.

    Article  Google Scholar 

  95. Shanmugavelu, S., Wong, H.K., Mardhati, M., 2012. A beef fattening decision support system. Malaysian Journal of Veterinary Research, 3, 7-13.

    Google Scholar 

  96. Silva, S.R., Gomes, M.J., Dias-da-Silva, A., Gil, L.F., Azevedo, J.M.T.D., 2005. Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography. Journal of Animal Science, 83, 350–357.

    CAS  PubMed  Article  Google Scholar 

  97. Soma, P., Kotze, A., Grobler, J.P., Van Wyk, J.B., 2012. South African sheep breeds: Population genetic structure and conservation implications. Small Ruminant Research, 103, 112-119.

    Article  Google Scholar 

  98. Snyman, M.A., Herselman, M.J., 2005. Comparison of productive and reproductive efficiency of Afrino, Dorper and Merino sheep in the False Upper Karoo. South African Journal of Animal Science, 35, 98-108.

    Google Scholar 

  99. Stanford, K., Bailey, D.R.C., Jones, S.D.M., Price, M.A., Kemp, R.A., 2001. Ultrasound measurement of longissimus dimensions and backfat in growing lambs: effects of age, weight and sex. Small Ruminant Research, 42, 189–195.

    Article  Google Scholar 

  100. Stanford, K., Jones, S.D.M., Price, M.A., 1998. Methods of predicting lamb carcass composition: A review. Small Ruminant Research, 29, 241-254.

    Article  Google Scholar 

  101. Strydom, P.E., Van Heerden, S.M., Van Heerden, H.C., Kruger, R., Smith, M.F., 2009. The influence of fat score and fat trimming on primal cut composition of South African lamb. South African Journal of Animal Science, 39, 233-242.

    Article  Google Scholar 

  102. Tainton N.M., 1988. A consideration of veld condition assessment techniques for commercial livestock production in South Africa, Journal of the Grassland Society of South Africa, 5, 76-79.

    Article  Google Scholar 

  103. Tedeschi, L.O., Cannas, A., Fox, D.G., 2010. A nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System. Small Ruminant Research, 89, 174-184.

    Article  Google Scholar 

  104. Tedeschi, L.O., Fox, D.G., Guiroy, P.J., 2004. A decision support system to improve individual cattle management. 1. A mechanistic, dynamic model for animal growth. Agricultural Systems, 79, 171-204.

    Article  Google Scholar 

  105. Terblanche, S., Brand, T.S., Jordaan, J.W., Van der Walt, J.C., 2012. Production response of lambs receiving creep feed while grazing two different pastures. South African Journal of Animal Science, 42, 535-539.

    Google Scholar 

  106. Thornley, J.H.M., France, J., 2007. Mathematical models in agriculture: Quantitative methods for the plant, animal and ecological sciences. 2nd. CABI. London.

    Google Scholar 

  107. Tshabalala, P.A., Strydom, P.E., Webb, E.C., De Kock, H.L., 2003. Meat quality of designated South African indigenous goat and sheep breeds. Meat Science, 65, 563-570.

    CAS  PubMed  Article  Google Scholar 

  108. Van de Vyver, W.F.J., Beukes, J.A., Meeske, R., 2013. Maize silage as a finisher feed for Merino lambs. South African Journal of Animal Science, 43, 116-120.

    Article  Google Scholar 

  109. Van Wyk, J.B., Fair, M.D., Cloete, S.W.P., 2003. Revised models and genetic parameter estimates for production and reproduction traits in the Elsenburg Dormer sheep stud. South African Journal of Animal Science, 33, 213-222.

    Google Scholar 

  110. Van Wyk, J.B., Swanepoel, J.W., Cloete, S.W., Olivier, J.J., Delport, G.J., 2008. Across flock genetic parameter estimation for yearling body weight and fleece. South African Journal of Animal Science, 38, 31-37.

    Google Scholar 

  111. Vieira, P.A.S., Pereira, L.G.R., Azevêdo, J.A.G., Neves, A.L.A., Chizzotti, M.L., dos Santos, R.D., de Araújo, G.G.L., Mistura, C., Chaves, A.V., 2013. Development of mathematical models to predict dry matter intake in feedlot Santa Ines rams. Small Ruminant Research, 112, 78-84.

    Article  Google Scholar 

  112. Vorster, M., Botha, P., Hobson, F.O. 1983. The utilization of karoo veld by livestock, Proceedings of the Annual Congress of the Grassland Society of Southern Africa, 18, 35-39.

    Article  Google Scholar 

  113. Walmsley, B.J., McPhee, M.J., Oddy, V.H., 2014. Development of the BeefSpecs fat calculator to assist decision making to increase compliance rates with beef carcass specifications. Animal Production Science, 54, 2003-2010.

    Article  Google Scholar 

  114. Wathes, C.M., Kristensen, H.H., Aerts, J.M., Berckmans, D., 2008. Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall? Computers and Electronics in Agriculture, 64, 2-10.

    Article  Google Scholar 

  115. Watson, R.H., Alexander, G., Cumming, I.A., MacDonald, J.W., McLaughlin, J.W., Rizzoli, D.J., Williams, D., 1968. Reduction of perinatal loss of lambs in winter in western Victoria by lambing in sheltered individual pens. Proceedings of the Australian Society of Animal Production; 7th Biennial meeting. pp 243-249

  116. Webb, E.C., Casey, N.H., 2010. Physiological limits to growth and the related effects on meat quality. Livestock Science, 130, 33-40.

    Article  Google Scholar 

  117. Webb, E.C., 2015. Description of carcass classification goals and the current situation in South Africa. South African Journal of Animal Science, 45, 229-233.

    CAS  Google Scholar 

  118. Webb, E.C., Allen, J., Morris, S.D., 2018. Effects of non-steroidal growth implant and dietary zilpaterol hydrochloride on growth and carcass characteristics of feedlot lambs. South African Journal of Animal Science, 48, 601-608.

    Google Scholar 

  119. Webb, E.C., O’neill, H.A., 2008. The animal fat paradox and meat quality. Meat Science, 80, 28-36.

    CAS  PubMed  Article  Google Scholar 

  120. Webster, A.J.F., 1980. The Energetic efficiency of growth. Livestock Production Science, 7, 243-252.

    Article  Google Scholar 

  121. Wolfger, B., Timsit, E., Pajor, E.A., Cook, N., Barkema, H.W., Orsel, K., 2015. Accuracy of an ear tag-attached accelerometer to monitor rumination and feeding behavior in feedlot cattle. Journal of Animal Science, 93, 3164-3168.

    CAS  PubMed  Article  Google Scholar 

  122. Wood, J.D., MacFie, H.J.H., 1980. The significance of breed in the prediction of lamb carcass composition from fat thickness measurements. Animal Science, 31, 315-319.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. S. Brand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Der Merwe, D.A., Brand, T.S. & Hoffman, L.C. Precision finishing of South African lambs in feedlots: a review. Trop Anim Health Prod (2020). https://doi.org/10.1007/s11250-020-02282-x

Download citation

Keywords

  • Maturity types
  • Intensification
  • Premium lamb
  • Modelling
  • Decision support system