Indirect measures of methane emissions of Sahelian zebu cattle in West Africa, role of environment and management

Abstract

In Northern Senegal, traditional cattle management systems (TRAD) which depend on natural forages coexist with intensified systems (INT) which rely on periodic supplementation with crop residues and local concentrates. This study aims to estimate the effects of seasons and management systems on the methane emissions of Gobra zebu, in relation to the diet’s chemical composition and feed intake. Six Gobra zebu cows per management system were individually monitored over 10 months, diet and faeces were sampled each season and their chemical composition and dry matter intake (DMI) were predicted by near infrared spectroscopy. Each diet was fermented in vitro to assess methane production and volatile fatty acid concentration. The DMI and digestible organic matter intake (DOMI) decreased (P < 0.0001) during the dry seasons for both systems in the same range, but INT improved the crude protein of the diets (P < 0.0001). Enteric methane production (mmol.g−1 dry matter) was lower for TRAD than INT, except during the rainy season when TRAD cows experienced a higher increase (P = 0.002). The methanogenic potential (methane production in vitro × DMI) varied with the seasons and the system with more accentuated variations for TRAD (P < 0.0001). Methanogenic potential shows true reflection of the effects of the seasons and management systems. The results highlight that enteric methane emissions varied with seasonal changes and that intensifying the diet induced no mitigating effect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adriansen, H.K. 2006. Continuity and Change in Pastoral Livelihoods of Senegalese Fulani. Agriculture and Human Values. 23, 215–229.

    Article  Google Scholar 

  2. Archimède, H., Bastianelli, D., Boval, M., Tran, G., and Sauvant, D. 2011. Ressources tropicales : disponibilité et valeur alimentaire. Inra Production Animale. 24, 23–40.

    Article  Google Scholar 

  3. Assouma, M. H., Lecomte, P., Hiernaux, P., Ickowicz, A., Corniaux, C., Decruyenaere, V., Diarra, A.R. and Vayssières, J.. 2018. How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands. Livestock Science. 216,16–23.

    Article  Google Scholar 

  4. Bah, A., Touré, I., Le Page, C., Ickowicz, A., and Diop, A.T. 2006. An agent-based model to understand the multiple uses of land and resources around drillings in Sahel. Mathematical and Computer Modelling. 44, 513–534.

    Article  Google Scholar 

  5. Bodas, R., Prieto, N., Garcia-Gonzàlez, R., Andrès, S., Giràldes, F.J., and Lopez, S. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science Technology. 176, 78–93.

    CAS  Article  Google Scholar 

  6. Boval, M., Coates, D.B., Lecomte, P., Decruyenaere, V. and Archimède. H. 2004. Faecal near infrared reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake of tropical grass by Creole cattle. Animal Feed Science and Technology. 114, 19–29.

    CAS  Article  Google Scholar 

  7. Breman, H., Diallo, A., Traoré, G., and Djiteye, M.M. 1978. The ecology of the Annual Migrations of Cattle in the Sahel. Proc. First Int. Rangeland Congress. 592–595.

  8. Chapagain, B.P., and Wiesman, Z. 2007. Determination of Saponins in the Kernel Cake of Balanites aegyptiaca by HPLC-ESI/MS. Phytochemical Analysis. 18, 354–362.

    CAS  Article  Google Scholar 

  9. Chirat, G., Groot, J.C.J., Messad, S., Bocquier, F., and Ickowicz, A. 2014. Instantaneous intake rate of free-grazing cattle as affected byherbage characteristics in heterogeneous tropicalagro-pastoral landscapes. Applied Animal Behaviour Science. 157, 48–60.

    Article  Google Scholar 

  10. Coates, D. B. and Dixon, R.M. 2011. Developing Robust Faecal near Infrared Spectroscopy Calibrations to Predict Diet Dry Matter Digestibility in Cattle Consuming Tropical Forages. Journal of Near Infrared Spectroscopy. 19, 507–519.

    CAS  Article  Google Scholar 

  11. Decruyenaere, V., Duldgen, A., and Stilman, D. 2009. Factors affecting intake by grazing ruminants and related quantification methods: a review. Biotechnologie Agronomie Société Environement. 13, 559–576.

    Google Scholar 

  12. Decruyenaere, V., Froidmont, E., Bartiaux-Thill, N., Buldgen, A., and Stilmant, D. 2012. Faecal near-infrared reflectance spectroscopy (NIRS) compared with other techniques for estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Animal Feed Science Technology. 173, 220–234.

    CAS  Article  Google Scholar 

  13. Doreau, M., Benhissi, H., Thior, Y.E., Bois, B., Leydet, C., Genestoux, L., Lecomte, P., Morgavi, D.P., and Ickowicz, A. 2016. Methanogenic potential of forages consumed throughout the year by cattle in a Sahelian pastoral area. Animal Production Science. 56, 613.

    CAS  Article  Google Scholar 

  14. FAO. 2012. Système d’information sur le pastoralisme au Sahel: Atlas des évolutions des systèmes pastoraux au Sahel 1970-2012. (Rome: Food and Agriculture Organization of the United Nations).

  15. Farid, H., Haslinger, E., Kunert, O., Wegner, C., and Hamburger, M. 2002. New Steroidal Glycosides from Balanites aegyptiaca. Helvetica Chimica Acta. 85, 1019–1026.

    CAS  Article  Google Scholar 

  16. Gemeda, B.S., and Hassen, A. 2014. In vitro fermentation, digestibility and methane production of tropical perennial grass species. Crop Pasture Science. 65, 479–488.

    CAS  Article  Google Scholar 

  17. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., and Tempio, G. 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities (Rome: Food and Agriculture Organization of the United Nations).

  18. Grainger, C., and Beauchemin, K.A. 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology. 166–167, 308–320.

    Article  Google Scholar 

  19. Iorizzi, M., Lanzotti, V., Ranalli, G., De Marino, S., and Zollo, F. 2002. Antimicrobial Furostanol Saponins from the Seeds of Capsicum annuum L. Var. acuminatum. Journal of Agricultural and Food Chemistry. 50, 4310–4316.

    CAS  Article  Google Scholar 

  20. Jayanegara, A., Leiber, F., and Kreuzer, M. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments: Meta-analysis on dietary tannins and ruminal methane. Journal of Animal Physiology and Animal Nutrition. 96, 365–375.

    CAS  Article  Google Scholar 

  21. Kouazounde, J., Long, J., Tim, A.M., and Joachim, D.G. 2016. In vitro screening of selected essential oils from medicinal plants acclimated to Benin for their effects on methane production from rumen microbial fermentation. African Journal of. Biotechnology. 15, 442–450.

    CAS  Article  Google Scholar 

  22. Martin, C., Rouel, J., Jouany, J.P., Doreau, M., and Chilliard, Y. 2008. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil1. Journal of Animal Science. 86, 2642–2650.

    CAS  Article  Google Scholar 

  23. Morgavi, D.P., Forano, E., Martin, C., and Newbold, C.J. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal. 4, 1024–1036.

    CAS  Article  Google Scholar 

  24. Morgavi, D.P., Kelly, W.J., Janssen, P.H., and Attwood, G.T. 2013. Rumen microbial (meta) genomics and its application to ruminant production. Animal. 7, 184–201.

    CAS  Article  Google Scholar 

  25. Ndao, S., Moulin, C.-H., Traoré, E.H., Diop, M., and Bocquier, F. 2019. Contextualized re-calculation of enteric methane emission factors for small ruminants in sub-humid Western Africa is far lower than previous estimates. Tropical Animal Health Production. 51, 919–928.

    Article  Google Scholar 

  26. Ramin, M., and Huhtanen, P. 2013. Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science. 96, 2476–2493.

    CAS  Article  Google Scholar 

  27. Rira, M., Morgavi, D.P., Archimède, H., Marie-Magdeleine, C., Popova, M., Bousseboua, H., and Doreau, M. 2015. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep1. Journal of Animal Science. 93, 334–347.

    CAS  Article  Google Scholar 

  28. Schlecht, E., Blümmel, M., and Becker, K. 1999. The Influence of the Environment on Feed Intake of Cattle in Semi-Arid Africa. (CAB International).

  29. Shenk, J., Westerhaus, M., and Berzaghi, P. 1997. Investigation of LOCAL calibration procedure for rear infrared instruments. Journal of Near Infrared Spectroscopy. 5, 223–232.

  30. Tappan, G.G., Sall, M., Wood, E.C., and Cushing, M. 2004. Ecoregions and land cover trends in Senegal. Journal of Arid Environment. 59, 427–462.

    Article  Google Scholar 

  31. Touré, O., and Arpaillange, J. 1986. Peul du Ferlo (L'Harmattan, PARIS).

    Google Scholar 

  32. Tourrand, J.-F. 2000. L’élevage dans la révolution agricole au Waalo, delta du fleuve Sénégal (CIRAD, Paris).

    Google Scholar 

  33. Tran, H., Salgado, P. and Lecomte, P. 2009. Species, climate and fertilizer effects on grass fibre and protein in tropical environments. Journal of Agricultural Science. 147, 555–568.

    CAS  Article  Google Scholar 

  34. Vincke, C., Diédhiou, I., and Grouzis, M. 2010. Long term dynamics and structure of woody vegetation in the Ferlo (Senegal). Journal of Arid Environment. 74, 268–276.

    Article  Google Scholar 

  35. Wallis de Vries, M.F. 1995. Estimating forage intake and quality in grazing cattle: a reconsideration of the hand-plucking method. Journal of Rangeland Management. 48, 370–375.

    Article  Google Scholar 

  36. Yañez-Ruiz, D.R., Bannink, A., Djikstra, J., Kebreab, E., Morgavi, D.P., O’Kiely, P., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Yu, Z., et al. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology. 216, 1–18.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Denis Bastianelli, Laurent Bonnal from the CIRAD and Amadou Sow for their contribution to this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Berenice Bois.

Ethics declarations

Management of experimental animals followed the guidelines for animal research of the French Ministry of Agriculture and guidelines for animal experimentation in the European Union (European Commission, 2010). Approval number for ethical evaluation APAFIS#8218–2016121517182412 v1.

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bois, B., Morgavi, D.P., González-García, E. et al. Indirect measures of methane emissions of Sahelian zebu cattle in West Africa, role of environment and management. Trop Anim Health Prod 52, 1953–1960 (2020). https://doi.org/10.1007/s11250-020-02212-x

Download citation

Keywords

  • Cattle management
  • Enteric methane
  • Feed intake
  • Sahel