Impact of high-concentrate diets with cottonseed associated with calcium lignosulfonate on the metabolic, productive, and carcass characteristics of feedlot lambs

Abstract

This study aimed to evaluate the metabolic, productive, and carcass parameters of feedlot lambs fed high-concentrate diets with cottonseed associated with calcium lignosulfonate. Treatments consisted of diets including whole cottonseed, crushed cottonseed, whole cottonseed with lignosulfonate (100 g/kg), crushed cottonseed with lignosulfonate (100 g/kg), and a control diet without cottonseed. Thirty ½ Dorper ½ Santa Inês, non-castrated male lambs with an average live weight of 24.9 ± 3.6 kg and an average age of 3.5 months were evaluated in a completely randomized design. There was no effect (P > 0.05) on the intakes of dry matter, organic matter, crude protein, and non-fibrous carbohydrates. The crushing of cottonseed and association with lignosulfonate increased (P < 0.01) the intake and digestibility of ether extract. No effect was observed (P > 0.05) for the concentrations of urine and plasma urea N, which averaged 616.2 and 108.6 mg/dL, respectively. There was a change (P < 0.01) in nitrogen balance for digested N in g/day. There was no effect (P > 0.05) on the urinary concentration of purine derivatives, except for uric acid excretions (P < 0.05). Lignosulfonate associated with cottonseed provided an average daily gain of 0.293 kg/day, which was higher than the 0.226 kg/day obtained without lignosulfonate, but lower than control (0.302 kg/day), which also showed higher values of carcass yield. High-concentrate diets formulated without cottonseed improve lamb production performance. The use of high-concentrate diets with cottonseed associated with calcium lignosulfonate provides greater weight gains in lambs.

This is a preview of subscription content, log in to check access.

References

  1. Association of Official Anaytical Chemists, AOAC. 1990. Official Methods of Analysis, (15th ed. Washington).

  2. Bagaldo, A.R., Miranda, G.S., Soares Júnior, M.S.F., Araújo, F.L., Matoso, R.V.M., Chizzotti, M.L., Bezerra, L.R., Oliveira, R.L., 2019. Effect of Licuri cake supplementation on performance, digestibility, ingestive behavior, carcass traits and meat quality of grazing lambs. Small Ruminant Research, 177, 18–24.

    Article  Google Scholar 

  3. Behan, A.A., Loh, T.C., Fakurazi, S., Kaka, U., Kaka, A., Samsudin, A.A., 2019. Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals, 9, 1–18.

    Article  Google Scholar 

  4. Brasil, 1977. Ministério da Agricultura, Pecuária e Abastecimento. Regulamento de Inspeção Industrial e Sanitária de Produtos de Origem Animal, Brasília.

    Google Scholar 

  5. Campos, F.S., Carvalho, G.G.P., Santos, E.M., Araújo, G.G.L., Gois, G.C., Rebouças, R.A., Magalhães, A.L.R., Oliveira, J.S., Voltolini, T.V., Carvalho, B.M.A., Perazzo, A.F., 2019. South African Journal of Animal Science., 49, 113–130.

    Google Scholar 

  6. Cartaxo, F.Q., Sousa, W.H., Cezar, M.F., Costa, R.G., Cunha, M.G.G., Gonzaga Neto, S., 2011. Carcass traits determined by ultrasonography in real time and after slaughter of lambs finished in feedlot with different levels of energy in the diet. Brazilian Journal of Science, 40, 160–167.

    Google Scholar 

  7. Chanjula, P., Cherdthong, A., 2018. Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats. Asian-Australasian Journal of Animal Science, 31, 514–521.

    CAS  Article  Google Scholar 

  8. Chen, X.B., Gomes, M.J., 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives. An overview of the technical details. International feed resources unit, (Bucksburn: Rowett research institute).

    Google Scholar 

  9. Corey, A.M., Wamsley, K.G.S., Winowiski, T.S., Moritz, J.S., 2014. Effects of calcium lignosulfonate, mixer-added fat, and feed form on feed manufacture and broiler performance. Jounal of Applied Poultry Research, 23, 418–428.

    CAS  Article  Google Scholar 

  10. Detmann, E., Pina, D.S., Valadares Filho, S.C., Campos, J.M.S., Paulino, M.F., Oliveira, A.S. de, Silva, P.A., Henriques, L.T., 2006c. Estimation of crude protein digestible fraction in cattle diets under Brazilian conditions. Brazilian Journal of Science, 35, 2101–2109.

    Google Scholar 

  11. Detmann, E., Sousa, M.A., Valadares Filho, S.C., Queiroz, A.C., Berchielli, T.T., Saliba, E. O.S. Cabral, L.S., Pina, D. S., Ladeira, M.M., Azevedo, J.A.G., 2012. Métodos para análise de alimentos - INCT - Ciência Animal, (Visconde do Rio Branco: Suprema).

    Google Scholar 

  12. Detmann, E., Valadares Filho, S.C., Henriques, L.T., Pina, D. S., Paulino, M.F., Valadares, R.F.D., Chizzotti, M.L., Magalhães, K.A., 2006a. Estimation of nonfiber carbohydrates digestibility in cattle using the Lucas test approach under Brazilian conditions. Brazilian Journal of Science, 35, 1479–1486.

    Google Scholar 

  13. Detmann, E., Valadares Filho, S.C., Henriques, L.T., Pina, D. S., Paulino, M.F., Magalhães, A.L.R., Figueiredo, D.M., Porto, M. O., Chizzotti, M.L., 2007. Reparameterization of the model based on Surface Law to predict the digestible fraction of neutral detergent fiber in Brazilian cattle. Brazilian Journal of Science, 36, 155–164.

    Google Scholar 

  14. Detmann, E., Valadares Filho, S.C., Pina, D.S., Campos, J.M.S., Paulino, M.F., Oliveira, A.S., Silva, P.A., 2006b. Estimation of ether extract digestibility in diets of ruminants: a model under Brazilian conditions. Brazilian Journal of Science, 35, 1469–1478.

    Google Scholar 

  15. Fiorentini, G., Carvalho, I.P.C., Messana, J.D., Roberta, C.C., Castagnino, P.S., Lage, J.F., Arcuri, P.B., Berchielli, T.T., 2015. Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers. Asian-Australasian Journal of Animal Sciences, 28, 1583–1591.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Khitrin, K.S., Fuks, S.L., Khitrin, S.V., Kazienkov, S.A., Meteleva, D.S., 2012. Lignin utilization options and methods. Russian Journal of General Chemistry, 82, 977–984.

    CAS  Article  Google Scholar 

  17. Lei, Y.G., Li, X.Y., Wang, Y.Y., Li, Z.Z., Chen, Y.L., Yang, Y.X., 2017. Determination of ruminal dry matter and crude protein degradability and degradation kinetics of several concentrate feed ingredients in cashmere goat. Journal of Applied Animal Research, 46, 134–140.

    Article  Google Scholar 

  18. Licitra, G., Hernandez, T.M., Van Soest, P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57, 347–358.

    Article  Google Scholar 

  19. Loor, J.J., Elolimy, A.A., McCann, J.C., 2016. Dietary impacts on rumen microbiota in beef and dairy production. Animal Frontiers, 6, 22–29.

    Article  Google Scholar 

  20. Mamuad, L.L., Lee, S.S., Lee, S.S., 2019. Recent insight and future techniques to enhance rumen fermentation in dairy goats. Asian-Australasian Journal of Animal Sciences, 32, 1321–1330.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marín, A.L.M., Hernández, M.P., Alba, L.M.P., Pardo, D.C., Sigler, A.I.G., Castro, G.G., 2013. Fat addition in the diet of dairy ruminants and its effects on productive parameters. Revista Colombiana de Ciencias Pecuarias, 26, 69–78.

    Google Scholar 

  22. Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85, 1217–1240.

    CAS  Google Scholar 

  23. Myer, R.O., Hersom, M.J., 2018. Whole cottonseed for beef cattle rations. AN34. Gainesville, FL: Animal Sciences Department, Institute of Food and Agricultural Sciences Extension.

  24. Neves, C.A., Santos, W.B.R., Santos, G.T.D., Silva, D.C., Jobim, C.C., Santos, F.S., Visentainer, J.V., Petit, H.V., 2009. Production performance and milk composition of dairy cows fed extruded canola seeds treated with or without lignosulfonate. Animal Feed Science and Technology, 154, 83–89.

    CAS  Article  Google Scholar 

  25. Nascimento, C.O., Santos, S.A., Pina, D.S., Tosto, M.S.L., Pinto, L.F.B., Eiras, D.N., Assis, D.Y.C., Perazzo, A.F., Araújo, M.L.G.M.L., Azevêdo, J.A.G., Mourão, G.B., Carvalho, G.G.P., 2020. Effect of roughage-to-concentrate ratios combined with different preserved tropical forages on the productive performance of feedlot lambs. Small Ruminant Research, 182, 15–21

    Article  Google Scholar 

  26. National Research Council – NRC, 2001. Nutrient requirements of small ruminants. (7ed. Washington: The National Academy Press).

  27. National Research Council – NRC, 2007. Nutrient requirements of small ruminants: Sheep. Goats. Cervids. And New World Camelids, (Washington: The National Academy Press).

    Google Scholar 

  28. Oliveira, A.P.D., Bagaldo, A.R., Loures, D.R.S., Bezerra, L.R., Moraes, S.A., Yamamoto, S.M., Araújo, F.L., Cirne, L.G., Oliveira, R.L., 2018. Effect of ensiling gliricidia with cassava on silage quality, growth performance, digestibility, ingestive behavior and carcass traits in lambs Animal Feed Science and Technology, 241, 198–209.

  29. Paim, T.P., Viana, P., Tilburg, M.F.V., Moura, A.A., Souza, J.R., McManus, C., Abdalla, A.L., Louvandini, H., 2019. Feeding effects of cottonseed and its co-products on the meat proteome from ram lambs. Scientia Agricola, 76, 463–472.

    Article  Google Scholar 

  30. Palmquist, D.L., Mattos, W.R.S., 2006. Metabolismo de lipídios. In: T.T. Berchielli, A.V. Pires and S.G. Oliveira (eds), Nutrição de ruminantes. (Jaboticabal: Funep).

    Google Scholar 

  31. Palmquist, D.L., Mattos, W.R.S., 2011. Metabolismo de Lipídios. In: T.T. Berchielli, A.V. Pires and S.G. Oliveira (eds), Nutrição de Ruminantes. (2ed. Jaboticabal: Funep).

  32. Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8, 13–27.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peixoto, E.L.T., Mizubuti, I.Y., Ribeiro, E.L.A., Moura, E.S., Pereira, E.S., Prado, O.P.P., Carvalho, L.N., Pires, K.A., 2017. Residual frying oil in the diets of sheep: intake, digestibility, nitrogen balance and ruminal parameters. Asian-Australasian Journal of Animal Sciences, 30, 51–56.

    CAS  Article  PubMed  Google Scholar 

  34. Pereira, E.S., Pereira, M.W.F., Arruda, P.C., Cabras, L.S., Oliveira, R.L., Mizubuti, I.I., Pinto, A.P., Campos, A.C.N., Gadelha, C.R.F., Carneiro, M.S.S., 2016. Animal Physiology and Animal Nutrition, 100, 723–730.

    CAS  Article  Google Scholar 

  35. Piani, B., Fabro, C., Susmel, P., 2004. Measurement of Purine Derivates and Creatinine in Urine By HPLC. In: H.P.S. Makkar, and X.B. Chen (eds), Estimation of Microbial Protein Supply in Ruminants Using Urinary Purine Derivates. (Norwell: Kluwer Academic Publishers).

    Google Scholar 

  36. Piona, M.N.M., Cabral, L.S., Zervoudakis, J.T., Abreu, J.G., Galati, R.L., Caetano, G.G.G.P., Silva, A.R., 2012. Whole cottonseed levels in feedlot lambs diets. Revista Brasileira de Saúde e Produção Animal, 13, 110–122.

    Article  Google Scholar 

  37. Rennó, L.N., Valadares Filho, S.C., Paulino, M.F., Leão, M.I., Valadares, R.F.D., Rennó, F.P., Paixão, M.L., 2008. Urea levels in diet for steers of four genetic groups: ruminal parameters, plasma urea, urea and creatinine excretions. Brazilian Journal of Animal Science, 37, 556–562.

    Google Scholar 

  38. Rufino Junior, J., Carvalho, D.M.G., Souza, J.G., Cabral, L.S., Silva, J.J., Ribeiro, M.D., Arnoldo, T.L.Q., Oliveira, A.S., Soares, J.Q., 2015. Whole cottonseed in diets without roughage for feedlot lambs. Semina: Ciências Agrárias, 36, 2727–2738.

    Google Scholar 

  39. Santos W.B.R., Santos G.T., Silva-Kazama D.C., Cecato U., Marchi F.E., Visentainer J.V., Petit H.V., 2011. Production performance and milk composition of grazing dairy cows fed pelleted or non-pelleted concentrates treated with or without lignosulfonate and containing ground sunflower seeds. Animal Feed Science and Technology, 169, 167–175.

    Article  Google Scholar 

  40. SAS, 2014. Version 9.4., (Cary: SAS Institute Inc.).

    Google Scholar 

  41. Sniffen, C.J., O’Connor, J.D., Van Soest, P.S., Fox, D.G., Russell, J.B., 1992. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. Journal of Animal Science, 70, 3562–3577.

    CAS  Article  Google Scholar 

  42. Toledo, M.C.F., Kuznesof, P.M., 2008. Calcium lignosulfonate chemical and technical assessment. Proceedings of the Joint FAO/WHO Expert Committee on Food Additives, 69, 1-8. Rome.

  43. Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polyssacarides in relation to animal nutrition. Journal of Animal Science, 74, 3583–3597.

    Google Scholar 

  44. Weiss, W.P., 1999. Energy prediction equations for ruminant feeds. Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, 61, 176-185.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luís Gabriel Alves Cirne.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cirne, L.G.A., de Carvalho, G.G.P., Viana, P.T. et al. Impact of high-concentrate diets with cottonseed associated with calcium lignosulfonate on the metabolic, productive, and carcass characteristics of feedlot lambs. Trop Anim Health Prod 52, 1821–1832 (2020). https://doi.org/10.1007/s11250-019-02194-5

Download citation

Keywords

  • Co-product
  • Feed additive
  • Feedlot
  • Ruminants