Skip to main content
Log in

Effects of replacing rice bran with tamarind seed meal in concentrate mixture diets on the changes in ruminal ecology and feed utilization of dairy steers

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Feed ingredients costs have been impacting the production cost. Attempts have been made to use local feed resources in order to reduce feed costs. The objective of this study was to identify effect of using crushed tamarind seed meal (TSM) in concentrate mixture on rumen fermentation, dry matter intake, and digestibility of dairy steers. Four rumen-fistulated dairy steers were used in a 4 × 4 Latin Square Design. Four levels of TSM were used to replace rice bran (RB) in the concentrate mixtures in four treatments (T1 = 0% replacement of RB, T2 = 30% replacement of RB, T3 = 60% replacement of RB, T4 = 100% replacement of RB). The findings revealed that replacement of TSM for RB resulted in similar digestibility of nutrients and intakes (P > 0.05). However, rumen fermentation parameters were remarkably improved, namely total VFA and the concentration of C3 especially at the highest level of replacements (100%, T4), (P < 0.05). Rumen protozoal population was found lowered in all replacements, especially those in higher levels of TSM replacement. Consequently, the rumen methane productions were significantly reduced. TSM can be a promising energy source to replace rice bran, hence lowering the cost of concentrate mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ampapon, T., Wanapat, M. and Kang, S.C., 2015. Rumen metabolism of swamp buffaloes fed rice straw supplemented with cassava hay and urea. Trop. Anim. Health and Prod. 48, 779–784.

    Article  Google Scholar 

  • Anantasook, N., Wanapat, M. and Cherdthong, A., 2014. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers. J. Animal Physiol. and Anim. Nutr. 98(1), 50–55.

    Article  CAS  Google Scholar 

  • AOAC( Official Methods of Analysis). 2012., Association of Official Analytical Chemists, 19th ed. Gaithersburg, MD.

  • Bhatta, R., Krishnamoorthy, U. and Mohammed, F., 2000. Effect of feeding tamarind (Tamarindus indica) seed husk as a source of tannin on dry matter intake, digestibility of nutrients and production performance of crossbred dairy cows in mid-lactation. J. Anim. Feed Sci. and Tech., 82, 67–74.

    Article  Google Scholar 

  • Bhatta, R., Krishnamoorthy, U. and Mohammed F., 2001. Effect of tamarind (Tamarindus indica) seed husk tannins on in vitro rumen fermentation. J. Anim. Feed Sci. and Tech., 90, 143–152.

    Article  CAS  Google Scholar 

  • Cieslak, A., Zmora, P., Matkowski, A., Nawrot-Hadzik, I., Pers-Kamczyc, E., El-Sherbiny, M., Bryszak M. and Szumacher-Strabel, M., 2016. Tannins from Sanguisorba offiinalis affect in vitro rumen methane production and fermentation .J. Anim. and Plant Sci., 26(1), 54–62

    CAS  Google Scholar 

  • Crocker, C.L., 1967. Rapid determination of urea nitrogen in serum or plasma without deproteinization. The American J. Med. Tech., 33(5), 361–365.

    CAS  Google Scholar 

  • Foiklang, S., Wanapat, M. and Norrapoke, T., 2016a. Effect of grape pomace powder, mangosteen peel powder and monensin on nutrient digestibility, rumen fermentation, nitrogen balance and microbial protein synthesis in dairy steers. Asian–Australas. J. Anim. Sci., 29(10), 1416–1423.

    CAS  PubMed  Google Scholar 

  • Foiklang, S., Wanapat, M. and Norrapoke, T., 2016b. In vitro rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation. Anim. Sci. J. 87(3), 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Galyean, M., 1989. Laboratory Procedure in Animal Nutrition Research. Dept. of Animal and Range Science, New Mexico State University, USA.

  • Gemeda, B.S. and Hassen, A., 2015. Effect of Tannin and Species Variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian– Australas. J. Anim. Sci., 28, 188–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hristov, A.N., Oh, J. and Firkins, J.L., 2013. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Sci., 91, 5045–5069.

    CAS  Google Scholar 

  • IPCC, 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

    Google Scholar 

  • Jayanegara, A., Wina, E. and Takahashi, J., 2014. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: Influence of addition levels and plant sources. Asian–Australas. J. Anim. Sci., 27, 1426–1435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamra, D.N., Agarwal, N. and Chaudhary, L.C. 2006. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int. Congr., 1293, 156–163.

    Article  CAS  Google Scholar 

  • Kara, K., Güçlü, B.K. and Baytok, E., 2015. Comparison of nutrient composition and antib methanogenic properties of different Rosaceae species. J.Anim. Feed Sci. and Tech., 24, 308–314.

    Article  Google Scholar 

  • Marangoni, A., Alli, I. and Kermasha, S., 1988. Composition and properties of seeds of the tree legume Tamarindus indica. J. Food Sci., 35, 1452–1455.

    Article  Google Scholar 

  • Moate, P.J., Williams, S.R.O., Torok, V.A., Hannah, M.C., Ribaux, B.E., Tavendale, M.H.,Eckard, R.J., Jacobs, J.L., Auldist, M.J. and Wales, W.J., 2014. Grape marc reduce methane emissions when fed to dairy cows. J. Dairy Sci. 97, 5073–5087.

    Article  CAS  PubMed  Google Scholar 

  • Moss, R., Jouany, I.P. and Newbold, J., 2000. Methane production by ruminants: its contribution to global warming. In Ann. de Zootech., 49(9), 231–253.

    Article  CAS  Google Scholar 

  • Naumann, H.D., Tedeschi, L.O., Zeller, W.E. and Huntley N.F., 2017. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. R. Bras. Zootec., 46(12), 929–949.

    Article  Google Scholar 

  • Pilajun, R. and Wanapat, M., 2013. Microbial population in the rumen of swamp buffalo (Bubalus bubalis) as influenced by coconut oil and mangosteen peel supplementation. J. Anim. Physiol. and Anim. Nutr., 97, 439–445.

    Article  CAS  Google Scholar 

  • Samuel, M., Sagathevan, S., Thomas, J. and Mathen, G., 1997. An HPLC method for estimation of volatile fatty acids in ruminal fluid. Ind. J. Dairy Sci., 67, 805–807.

    Google Scholar 

  • SAS, 2013. User’s Guide: Statistic, Version 9.4th Edition. SAS Inst. Inc., Cary, NC, USA..

    Google Scholar 

  • Souza, C.M., Oliveira, R.L., Voltolini, T.V., Menezes, D.R., dos Santos, N.J.A., Barbosa, A.M., Silva, T.M., Pereira, E.S. and Bezerra, L.R., 2018., Lambs fed cassava silage with added tamarind residue: Silage quality, intake, digestibility, nitrogen balance, growth performance and carcass quality. J. Anim. Feed Sci. and Tech., 235, 50–59.

    Article  CAS  Google Scholar 

  • Steel, R.G.D. and Torrie, J.H., 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. McGraw-Hill Book Co. NY, USA.

    Google Scholar 

  • Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. and de Haan, C., 2006. Livestock’s role in climate change and air pollution. 79-123. In: Livestock’s long shadow: environmental issues and options (eds. Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, and C. de Haan), FAO, Rome, Italy.

    Google Scholar 

  • Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583–3597.

    Article  PubMed  Google Scholar 

  • Wanapat, M., 1990. Nutritional Aspects of Ruminant Production in Southeast Asia with Special Reference to Thailand. Dept. of Animal Science, Faculty of Agriculture, Khon Kaen Univ., Khon Kaen. pp. 217.

    Google Scholar 

  • Wanapat, M. and Pimpa, O., 1999. Effect of ruminal NH3-N levels ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian– Australas. J. Anim. Sci., 12, 904–907.

    Article  Google Scholar 

  • Wanapat, M., Gunun, P., Anantasook, N. and Kang, S., 2014. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci., 152(4), 675–685.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their most sincere gratitude to the Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University and the Thailand Research Fund (TRF) through the International Research Network (IRN) program (TRF-IRN57W0002) and TRF-IRG598001 and tamarind processing group of Koksa-ngud village for their financial support and research facilities. The Post Doc. Training Program provided by the Research and Graduate School, Khon Kean University, Thailand (Grant no.58440), is also acknowledged.

Funding

This study received financial support from the Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University and the Thailand Research Fund (TRF) through the International Research Network (IRN) program (TRF-IRN57W0002) and TRF-IRG598001 and tamarind processing group of Koksa-ngud village.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metha Wanapat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunoi, A., Wanapat, M., Foiklang, S. et al. Effects of replacing rice bran with tamarind seed meal in concentrate mixture diets on the changes in ruminal ecology and feed utilization of dairy steers. Trop Anim Health Prod 51, 523–528 (2019). https://doi.org/10.1007/s11250-018-1719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-018-1719-z

Keywords

Navigation