Advertisement

Utilization of Mucuna pruriens whole pods to feed lactating hair ewes

  • Irina Nadieska Peniche-Gonzalez
  • Luis Armando Sarmiento-Franco
  • Ronald Herve Santos-Ricalde
Regular Articles
  • 31 Downloads

Abstract

Twenty nine Pelibuey × Katahdin hair ewes rearing single lamb were used during 42 days of lactation to evaluate the effect of including the Mucuna pruriens whole pods in the diets of lactating ewes on milk production and offspring performance. Animals were distributed at random into three experimental diets: a control diet without Mucuna (M0), and two more diets with the inclusion of 13 (M13) and 26% (M26), of milled pods of Mucuna pruriens, respectively. Dry matter intake, was not significantly different (P > 0.05) among diets. Milk yield (P > 0.05) was 734, 786, and 694 g/day for diets M0, M13, and M26, respectively. Milk fat (P > 0.05), milk protein (P > 0.05), and milk lactose (P > 0.05) did not differ between treatments. Lambs had similar daily weight gain (P > 0.05) among diets (180, 174, and 171 g/day for diets M0, M13, and M26, respectively). Diets with Mucuna whole pods were 5.6 and 12.9% more profitable (M13 and M26, respectively) than control diet. Under the conditions of this work, Mucuna pruriens whole pods can be included up to 26% in the diets of lactating crossbred hair ewes without negatively affecting their productive performance during the first 6 weeks of lactation.

Keywords

Lactation Legumes Performance Sheep Velvet bean 

Notes

Acknowledgments

The authors thank to the field staff from the Animal Nutrition Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatan for their support in the field work of this study. The first author acknowledges the PhD scholarships received from the International Center for Development and Decent Work (ICDD-Germany) and the Consejo Nacional de Ciencia y Tecnologia (CONACyT-Mexico).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adebowale, Y.A, Adeyemi, A., Oshodi A. 2005. Variability in the physicochemical, nutritional and antinutritional attributes of six Mucuna species. Food Chemestry. 89, 37–48.CrossRefGoogle Scholar
  2. AFRC. 1993. Energy and protein requirements of ruminants: an advisory manual prepared by the AFRC Technical Committee on responses to nutrients. First. Wallingford, UK: CAB International.Google Scholar
  3. AOAC. 2012. Official methods of analysis of AOAC international. 19th ed. Latimer GWJ, editor. Gaithersburg, USA: Association of Official Analytical Chemists.Google Scholar
  4. Ayala-Burgos, A.J., Herrera-Díaz, P.E., Castillo-Caamal, J.B., Rosado-Rivas, C.M., Osornio-Muñoz, L., and Castillo-Caamal A.M. 2003. Rumen degradabiility and chemical composition of the velvet bean (Mucuna spp.) grain and husk. Tropical and Subtropical Agroecosystems. 1, 71–75.Google Scholar
  5. Baker, I.A., Dosky, K.N. and Alkass, J.E. 2009. Milk yield and composition of karadi ewes with the special reference to the method of evacuation. Journal of Duhok University. 12, 210–215.Google Scholar
  6. Bernardino, C.C.J., Arturo, C.M.J., Roberto, B.C., Wilberth, T.L. 2014. Evaluation of multiple-use cover crops under rainfed during two seasons in Yucatan, Mexico. American Journal of Plant Science. 5, 1069–1080.CrossRefGoogle Scholar
  7. Burgos-Gonzalez, C., Huerta-Aparicio, M., Aguirre, V., Vázquez, R., Orihuela A. and Pedernera M. 2017. Milk production and lamb development in Saint Croix and Katahdin hair sheep breeds (Ovis aries). Tropical Animal Health and Production.  https://doi.org/10.1007/s11250-017-1448-8
  8. Castellanos-Ruelas, A. and Valencia-Zarazua, M. 1982. Quantitative and qualitative study of milk production of the pelibuey sheep. Tropical Animal Production. 7, 232–240.Google Scholar
  9. Castillo-Caamal, A.M., Castillo-Caamal, J.B. and Ayala-Burgos, A.J. 2003. Mucuna bean (Mucuna spp.) supplementation of growing sheep fed with a basal diet of napier grass (Pennisetum purpureum). Tropical and Subtropical Agroecosystems. 1, 107–111.Google Scholar
  10. Chay-Canul, A.J., Ayala-Burgos, A.J., Ku-Vera, J.C. and Magaña-Monforte, J.G. 2009. Efecto del tamaño de particula sobre, consumo, digestibilidad y balance de nitrógeno en ovinos Pelibuey alimentados con dietas basadas en frijol terciopelo (Mucuna pruriens) y grano de maíz. Tropical and Subtropical Agroecosystems. 10, 383–392.Google Scholar
  11. Chay-Canul, A.J., Ayala-Burgos, A.J., Ku-Vera, J.C., Magaña-Monforte, J.G. and Ferrell L.C. 2011. Metabolizable energy intake and changes in body weight and body condition of pelibuey ewes fed three level of roughage diets under tropical conditions. Tropical and Subtropical Agroecosystems. 14, 777–786.Google Scholar
  12. Chikagwa-Malunga, S.K., Adesogan, A.T., Sollenberger, L.E., Badinga, L.K., Szabo, N.J. and Littell R.C. 2009a. Nutritional characterization of Mucuna pruriens 1. Effect of maturity on the nutritional quality of botanical fractions and the whole plant. Animal Feed Science and Technology. 148, 34–50.CrossRefGoogle Scholar
  13. Chikagwa-Malunga, S.K., Adesogan, A.T., Sollenberger, L.E., Phatak, S.C., Szabo, N.J., Kim, S.C., Huisden, C.M. and Littell R.C. 2009b. Nutritional characterization of Mucuna pruriens. 4. Does replacing soybean meal with Mucuna pruriens in lamb diets affect ruminal, blood and tissue l-dopa concentrations? Animal Feed Science and Technology. 148, 124–137.CrossRefGoogle Scholar
  14. García-Galvan, A., Belmar-Casso, R., Sarmiento-Franco, L. and Sandoval-Castro, C. 2012. Evaluation of the metabolizable energy value for growing lambs of the Mucuna pruriens seed and the whole pod. Tropical Animal Health and Production. 44, 843–8477.CrossRefPubMedGoogle Scholar
  15. Garnsworthy, P.C. and Webb, R. 1999. The influence of nutrition on fertility in dairy cows. In: Recent Advances in Animal Nutrition. Garnsworthy, P.C. and Iseman, J. Editors. Nottingham, UK: Nottingham University Press; pp 39–57.Google Scholar
  16. Godfrey, R.W., Gray, M.L. and Collins J.R. 1997. Lamb growth and milk production of hair and wool sheep in a semi-arid tropical environment. Small Ruminant Research. 24, 77–83.CrossRefGoogle Scholar
  17. Haetinger-Hübner, C., Cassol-Pires, C., Barcelos-Galvani, D., Carvalho, S. and Pfüller-Wommer, T. 2007. Consumo de nutrientes, produção e composição do leite de ovelhas alimentadas com dietas contendo diferentes niveis de fibra em detergente neutro. Revista Brasileña de Zootecnia. 36, 1882–1888.CrossRefGoogle Scholar
  18. INEGI. 2010. Anuario estadistico de los Estados Unidos Mexicanos. Aguascalientes, Ags, Mexico.Google Scholar
  19. Kleyn, D.H., Lynch, J.M., Barbano, D.M., Bloom, M.J. and Mitchell M.W. 2001. Determination of fat in raw and processed milks by the Gerber method: collaborative study. Journal of AOAC International. 84, 1499–1508.PubMedGoogle Scholar
  20. Loyra-Tzab, E., Sarmiento-Franco, L.A., Sandoval-Castro, C.A. and Santos-Ricalde R.H. 2013. Nutrient digestibility and metabolizable energy content of Mucuna pruriens pods fed to growing Pelibuey lambs. Animal Feed Science and Technology. 26, 981–986.Google Scholar
  21. Mahecha, L. 2002. El silvopastoreo: una alternativa de producción que disminuye el impacto ambiental de la ganadería bovina. Revista Colombiana de Ciencias Pecuarias. 15, 226–231.Google Scholar
  22. Matenga, V.R., Ngongoni, N.T., Titterton, M. and Maasdorp, B.V. 2003. Mucuna see as a feed ingredient for small ruminants and effect of ensiling on its nutritive value. Tropical and Subtropical Agroecosystems. 1, 97–105.Google Scholar
  23. Mendoza-Castillo, H., Castillo-Caamal, J.B. and Ayala-Burgos, A. 2003. Impact of Mucuna bean (Mucuna spp.) supplementation on milk production of goats. Tropical and Subtropical Agroecosystems. 1, 117–122.Google Scholar
  24. Mugendi, J.B., Njagi, E., Kuria, E.N., Mwasaru, M.A., Mureithi, J.G. and Apostolides, Z. 2010. Nutritional quality and physicochemical properties of Mucuna bean (Mucuna pruriens L.) protein isolates. International Food Research Journal. 17, 357–366.Google Scholar
  25. NRC. 2007. Nutrient requirements of small ruminant’s sheep, goats, cervids, and new world camelids. Washington, USA: The national academic press.Google Scholar
  26. Nudda, A., Bencini, R., Mijatovic, S. and Pulina G. 2002. The yield and composition of milk in Sarda, Awassi, and Merino sheep milked unilaterally at different frequencies. Journal of Dairy Science. 85, 2879–2884.CrossRefPubMedGoogle Scholar
  27. Park, Y.W., Juárez, M., Ramos, M. and Haenlein, G.F.W. 2007. Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research. 68, 88–113.CrossRefGoogle Scholar
  28. Peniche-Gonzalez, I., Sarmiento-Franco, L. and Santos-Ricalde, R. 2015. Estimation of milk production in hair ewes by two methods of measurement. Revista MVZ Cordoba. 20, 4629–4635.CrossRefGoogle Scholar
  29. Perez-Hernandez, F., Ayala-Burgos, A.J. and Belmar-Casso, R. 2003. Performance of growing lambs supplemented with Mucuna pruriens. Tropical and Subtropical Agroecosystems, 1, 119–122.Google Scholar
  30. Ruiz-Sesma, D.L., Lara-Lara, P.E., Sierra-Vázquez, A.C., Aguilar-Urquizo, E., Magaña-Magaña, M.A. and Sangines-Garcia, J.R. 2006. Evaluacion nutritiva y productiva de ovinos alimentados con heno de Hibiscus rosa-sinensis. Zootecnia Tropical. 24, 467–482.Google Scholar
  31. Russel, A.J.F., Doney, J.M. and Gunn, R.G. 1969. Subjective assessment of body fat in live sheep. Journal of Agricultural Science. 72, 451–454.CrossRefGoogle Scholar
  32. Safwat, A.M., Sarmiento-Franco, L., Santos-Ricalde, R.H., Nieves, D. Magaña-Sevilla, H. 2015. Effect of dietary inclusión of processed Mucuna pruriens seed meal on growing rabbits. Animal Feed Science and Technology. 201, 72–79.CrossRefGoogle Scholar
  33. Sandoval-Castro, C.A., Herrera, P., Capetillo-Lea, C.M. and Ayala-Burgos, A.J. 2003. In vitro gas production and digestibility of Mucuna bean. Tropical and Subtropical Agroecosystems 1, 77–79.Google Scholar
  34. SAS. 2002. SAS User’s Guide: Statistics. Ver 9.0. SAS Institute. Cary, North Carolina, USA.Google Scholar
  35. Siddhuraju, P. and Becker, K. 2005. Nutritional and antinutritional composition, in vitro amino acid availability, starch digestibility and predicted glycemic index of differentially processed mucuna beans (Mucuna pruriens var. utilis): an under-utilised legume. Food Chemestry. 91, 275–286.CrossRefGoogle Scholar
  36. Szabo, N.J. and Tebbett, I.R. 2002. The chemistry and toxicity of Mucuna species. In: Food Feed from Mucuna Curr uses and the way forward. Flores B.M., Eilittä, M., Myhrman, R., Carew, L.B. and Carsky, J. Editors. Workshop, CIDICCO, CIEPCA and World Hunger Research Center, Tegucigalpa, Honduras (April 26–29, 2000), pp 120–141Google Scholar
  37. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.CrossRefPubMedGoogle Scholar
  38. Vite-Crisobal, C., Lopez-Ordaz, R., Garcia-Muñiz, J.G., Ramírez-Valverde R., Ruiz-Flores, A. and Lopez-Ordaz, R. 2007. Milk yield and reproductive performance of supplemented dual-purpose cows grazing tropical forages. Veterinaria México. 38, 63–79.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations