Tropical Animal Health and Production

, Volume 50, Issue 5, pp 1099–1105 | Cite as

Anthelmintic efficacy of hydro-methanolic extracts of Larrea tridentata against larvae of Haemonchus contortus

  • José E. García
  • Leónides Gómez
  • Pedro Mendoza-de-Gives
  • José L. Rivera-Corona
  • Jair Millán-Orozco
  • Juan A. Ascacio
  • Miguel A. Medina
  • Miguel Mellado
Regular Articles


An in vitro study was conducted to determine the anthelminthic activity of hydro-methanolic extracts of Larrea tridentata on sheathed and exsheathed larvae of Haemonchus contortus. Larvae of the parasite were incubated at 20–25 °C in hydro-methanolic extracts at concentrations of 12.5, 25, 50, 100, and 200 mg/mL for 24, 48, or 72 h. Ivermectin and water were the positive and negative controls, respectively. Total phenolic compounds of leaves of L. tridentata were 97.88 ± 10.45 mg/g of dry matter. Other compounds detected in this shrub by HPLC-mass spectrometry were sesamin, galocatechin, peonidin 3-O rutinoside, methyl galangin, epigallocatechin 7-O-glucuronide, and epigalocatechin. Mortality rate of sheathed and exsheathed H. contortus was low (16–34%) with doses ≤ 100 mg/mL of the extracts. At 200 mg/ml, the hydro-methanolic extracts of L. tridentata killed 32.1 and 68.4% of sheathed and exsheathed larvae, respectively, regardless of incubation time. The effective concentration of the L. tridentata extract for 50% larvae mortality (EC50) after 24 h of incubation was 36 mg/mL (CI = 6–94). Microscopic observations revealed damage to the cuticle of this parasite exposed to extracts of L. tridentata. These in vitro results provided evidence that L. tridentata extracts possess anti-Haemonchus contortus properties, particularly during the exsheathed stage of this nematode. It would be necessary to assess the safety of this shrub in vivo and also to carry out in vivo efficacy studies.


Tannins Flavonols Lignan Exsheathed larvae 



The authors are thankful to the personnel of Laboratory of Helminthology (CENID-PAVET) for allowing us to carry out much of this experiment in their facilities.

Compliance with ethical standards

Conflict of interest statement

All authors declare that there are no actual or potential conflicts of interest between the authors and other people or organizations that could inappropriately bias their work.


  1. Aarland, R.C., Peralta-Gómez, S., Morales-Sánchez, C., Parra Bustamante, F., Villa-Hernández, J.M., Díaz de León Sánchez, F., Pérez-Flores, L.J., Rivera-Cabrera, F., Mendoza-Espinosa, J.A., 2015. A pharmacological and phytochemical study of medicinal plants used in Mexican folk medicine. Indian Journal of Traditional Knowledge, 14, 550–557.Google Scholar
  2. Al-Rofaai, A., Rahman, W. A., Abdulghani, M., 2013. Sensitivity of two in vitro assays for evaluating plant activity against the infective stage of Haemonchus contortus strains. Parasitology Research, 112, 893–898.CrossRefPubMedGoogle Scholar
  3. Alonso-Díaz, M.A., Torres-Acosta, J.F., Sandoval-Castro, C.A., Hoste, H., 2011. Comparing the sensitivity of two in vitro assays to evaluate the anthelmintic activity of tropical tannin rich plant extracts against Haemonchus contortus. Veterinary Parasitology, 181, 360–364.CrossRefPubMedGoogle Scholar
  4. Arteaga, S., Andrade-Cetto, A., Cárdenas, R., 2005. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. Journal of Ethnopharmacology, 98, 231–239.CrossRefPubMedGoogle Scholar
  5. Athanasiadou, S., Githiori, J., Kyriazakis, I., 2007. Medicinal plants for helminth parasite control: facts and fiction. Animal, 1, 1392–1400.CrossRefPubMedGoogle Scholar
  6. Athanasiadou, S., Kyriazaks, L., Jackson, F., Coop, R.H., 2001. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep In vivo and In vitro studies. Veterinary Parasitology, 91, 205–219.CrossRefGoogle Scholar
  7. Beserra de Oliveira, L.M., Leal Bevilaqua, C.M., Freitas Macedo, I.T., de Morais, S.M., Barros Monteiro, M.V., Cabral Campello, C., Correia Ribeiro, W.L., Frota Batista, E.K., 2011. Effect of six tropical tanniferous plant extracts on larval exsheathment of Haemonchus contortus. Revista Brasileira de Parasitologia Veterinaria, 20, 155–160.CrossRefGoogle Scholar
  8. Chan-Pérez, J.I., Torres-Acosta, J.F.J., Sandoval-Castro, C.A., Castañeda-Ramírez, G.S., Vilarem, G., Mathieu, C., Hoste, H., 2017. Susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone:water extracts of polyphenol-rich plants. Part 2: Infective L3 larvae. Veterinary Parasitology, 240, 11–16.CrossRefPubMedGoogle Scholar
  9. Coop, R.L., Kyriazakis, I. 2001. Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends in Parasilology 17, 325-330.CrossRefGoogle Scholar
  10. Cooper, K.M., McMahon, C., Fairweather, I., Elliott, C.T., 2015. Potential impacts of climate change on veterinary medicinal residues in livestock produce: An island of Ireland perspective. Trends in Food Science and Technology, 44, 21–35.CrossRefGoogle Scholar
  11. Da Silva, A.S., Schafer, A.S., Aires, A.R., Tonin, A.A., Pimentel, V.C., Oliveira, C.B., Zanini, D., Schetinger, M.R.C., Lopes, S.T.A., Leal, M.L.R., 2013. E-ADA activity in erythrocytes of lambs experimentally infected with Haemonchus contortus and its possible functional correlations with anemia. Research in Veterinary Science, 95, 1026–1030.CrossRefPubMedGoogle Scholar
  12. Fthenakis, G.C., Mavrogianni, V.S., Gallidis, E., Papadopoulos, E., 2015. Interactions between parasitic infections and reproductive efficiency in sheep. Veterinary Parasitology, 208, 56–66.CrossRefPubMedGoogle Scholar
  13. Geurden, T., Chartier, C., Fanke, J., di Regalbono, A. F., Traversa, D., von Samson-Himmelstjerna, G., Demeler, J, Vanimisetti, H.B. Bartram, David, J., Denwood, M.J., 2015. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. International Journal for Parasitology: Drugs and Drug Resistance, 5, 163–171.PubMedPubMedCentralGoogle Scholar
  14. Githigia, S.M., Thamsborg, S.M., Munyua, W.K., Maingi, N., 2001. Impact of gastrointestinal helminths on production in goats in Kenya. Small Ruminant Research, 42, 21–29.CrossRefGoogle Scholar
  15. Githiori, J.B., Höglund, J., Waller, P.J., 2005. Ethnoveterinary plant preparations as livestock dewormers: practices, popular beliefs, pitfalls and prospects for the future. Animal Health Research Reviews, 6, 91–103.CrossRefPubMedGoogle Scholar
  16. Gobbo-Neto, L., Lopes, N.P., 2007. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30, 374–381.CrossRefGoogle Scholar
  17. Hoste, H., Jackson, F., Athanasiadou, S., Thamsborg, S.M., Hoskin, S.O., 2006. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology. Philadelphia, 22, 253–261.CrossRefGoogle Scholar
  18. Kaplan, R.M., Vidyashankar, A.N., 2012. An inconvenient truth: global warming and anthelmintic resistance. Veterinary Parasitology, 186, 70–78.CrossRefPubMedGoogle Scholar
  19. Klongsiriwet, C., Quijada, J., Williams, A. R., Mueller-Harvey, I., Williamson, E. M., Hoste, H., 2015. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. International Journal for Parasitology: Drugs and Drug Resistance, 5, 127–134.PubMedPubMedCentralGoogle Scholar
  20. Martínez-Ortíz-de-Montellano, C., Vargas-Magaña, J.J., Canul-Ku, H.L., Miranda-Soberanis, R., Capetillo-Leal, C., Sandoval-Castro, C.A., Hoste, H., Torres-Acosta, J.F.J., 2010. Effect of tropical tannin-rich plant Lysiloma latisiliquum on adult populations of Haemonchus contortus in sheep. Veterinary Parasitology, 172, 283–290.CrossRefPubMedGoogle Scholar
  21. Martins, S., Teixeira, J.A., Mussatto, S.I., 2013. Solid-state fermentation as a strategy to improve the bioactive compounds recovery from Larrea tridentata leaves. Applied Biochemistry and Biotechnology, 171, 1227–1239.CrossRefPubMedGoogle Scholar
  22. Mavrot, F., Hertzberg, H., Torgerson, P., 2015. Effect of gastro-intestinal nematode infection on sheep performance: a systematic review and meta-analysis. Parasites and Vectors, 8, 557.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mellado, M., 2016. Dietary selection by goats and the implications for range management in the Chihuahuan Desert: a review. Rangeland Journal, 38, 331–341.CrossRefGoogle Scholar
  24. Mellado, M., Valdez, R., Lara, L. M., Lopez, R., 2003. Stocking rate effects on goats: A research observation. Journal of Range Management, 56, 167–173.CrossRefGoogle Scholar
  25. Morgan, E.R., Charlier, J., Hendrickx, G., Biggeri, A., Catalan, D., von Samson-Himmelstjerna, G., Demeler, J., E. Müller, van Dijk, J.,Kenyon, F., Skuce, P., Höglund, J., O'Kiely, P. ,van Ranst, B., de Waal, T., Rinaldi, L., Cringoli, G., Hertzberg, H., Torgerson, P., Wolstenholme, A. Vercruysse, J., 2013. Global change and helminth infections in grazing ruminants: impacts, trends and sustainable solutions. Agriculture, 3, 484–502.CrossRefGoogle Scholar
  26. Nieuwhof, G.J., Bishop, S.C., 2005. Costs of the major endemic diseases in Great Britain and the potential benefits of reduction in disease impact. Animal Science, 81, 23–29.CrossRefGoogle Scholar
  27. Okaiyeto, S.O., Ajanusi, O.J., Sackey, A.K., Tekdek, L.B., 2010. Changes in some hematological values associated with mixed Trypanosoma congolense and Haemonchus contortus infection in Yankasa sheep. Veterinary Research, 3, 9–13.Google Scholar
  28. Page, A.P., Winter, A.D., 2003. Enzymes involved in the biogenesis of the nematode cuticle. Advances in Parasitology, London, 53, 85–148.CrossRefGoogle Scholar
  29. Peter, J.W., Chandrawathani, P., 2005. Haemonchus contortus: parasite problem No. 1 from tropics - Polar Circle. Problems and prospects for control based on epidemiology. Tropical Biomedicine, 22, 131–137.PubMedGoogle Scholar
  30. Quijada, J., Fryganas, C., Ropiak, H.M., Ramsay, A., Mueller-Harvey, I., Hoste, H., 2015. Anthelmintic activities against Haemonchus contortus or Trichostrongylus colubriformis from small ruminants are influenced by structural features of condensed tannins. Journal of Agricultural and Food Chemistry, 63, 6346–6354.CrossRefPubMedGoogle Scholar
  31. Schmidth, T.J., Rzeppa, S., Kaiser, M., Brun, R., 2012. Larrea tridentata - Absolute configuration of its epoxylignans and investigations on its antiprotozoal activity. Phytochemistry Letters, 5, 632–638.CrossRefGoogle Scholar
  32. Shrestha, B.H., Bassnett, V.D. Babu, Patel, S.S., 2009. Anthelmintic and antimicrobial activity of the chloroform extract of Pergularia daemia frosk. Advances in Pharmacology and Toxicology, 10, 13–16.Google Scholar
  33. Tomar, R.S., Preet, S., 2016. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. Journal of Helminthology, 91, 454–461.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • José E. García
    • 1
  • Leónides Gómez
    • 1
  • Pedro Mendoza-de-Gives
    • 2
  • José L. Rivera-Corona
    • 3
  • Jair Millán-Orozco
    • 4
  • Juan A. Ascacio
    • 5
  • Miguel A. Medina
    • 1
  • Miguel Mellado
    • 1
  1. 1.Department of Animal NutritionAutonomous Agrarian University Antonio NarroSaltilloMexico
  2. 2.National Center for Veterinary Parasitology Research, Agriculture and Forestry ResearchNational Institute for AnimalJiutepecMexico
  3. 3.Polytechnic Univesity of MorelosJiutepecMexico
  4. 4.Department of Veterinary ScienceAutonomous Agrarian University Antonio NarroTorreonMexico
  5. 5.Department of Food SciencesAutonomous University of CoahuilaSaltilloMexico

Personalised recommendations