Tropical Animal Health and Production

, Volume 50, Issue 4, pp 815–823 | Cite as

Evaluation of days of total collection and use of internal markers in nutritional trials with small ruminants

  • Catarine S. C. da Teixeira
  • Gleidson G. P. de Carvalho
  • Isis C. M. Nicory
  • Aracele V. Santos
  • Douglas S. dos Pina
  • José E. F. de Júnior
  • Maria L. G. M. L. de Araújo
  • Luana M. A. de Rufino
  • Luís G. A. Cirne
  • Aureliano J. V. Pires
Regular Articles

Abstract

Two experiments were conducted to evaluate the number of days required for total fecal collection and the viability of using the indigestible dry matter (iDM), indigestible neutral detergent fiber (iNDF), and indigestible acid detergent fiber (iADF) internal markers to determine the fecal excretion of dry matter (FEDM) and digestibility in nutritional trials with small ruminants. Eight sheep in the first experiment and eight goats in the second experiment were distributed into two 4 × 4 Latin square designs. There were no significant differences between days of total fecal collection for FEDM; digestibility of dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber corrected for ash and protein (NDFap), and non-fibrous carbohydrates corrected for ash and protein (NFCap); and total digestible nutrients (TDN) in both species. The results suggest that only 1 day of total collection is sufficient to obtain the FEDM and the digestibility of the nutritional components in sheep and goats. The markers are efficient in determining fecal production and digestibility in these animal species.

Keywords

iNDF In situ Internal markers 

Notes

Acknowledgements

Acknowledgements are due to the National Council for Scientific and Technological Development—CNPq.

Compliance with ethical standards

This study was approved by the Committee of Ethics in Animal Experimentation of the Federal University of Bahia, BA, Brazil (Permit no 05-2016).

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. AOAC, 1990. Official Methods of Analysis, 15th edition, Association of Official Analytical Chemists, Arlington, Verginia.Google Scholar
  2. Barros, E.E.L., Fontes, C.A.A., Detmann, E., Vieira, R.A.M., Henriques, L.T., Fernandes, A.M., 2009. Biases in fecal excretion estimation by using internal markers and chromic oxide in digestion trials with ruminants, Revista Brasileira de Zootecnia, 38, 2015–2020.CrossRefGoogle Scholar
  3. Cardenas, J.E.G., Paulino, M.F., Lopes, S.A., Silva, A.G., Barros, L., Valente, É.E.L., 2015. Performance productive, intake and digestibility of nursing calves raised on pasture supplemented with different levels of crude protein, Archivos de Zootecnia, 64, 167–174.Google Scholar
  4. Carvalho, G.G.P., Garcia, R., Pires, A.J.V., Silva, R.R., Ribeiro, L.S.O., Chagas, D.M.T., Pinho, B.D., Domiciano, B.E.M., 2010. Consumption, apparent digestibility and daily total collection in the estimation of digestion in goats fed diets containing sugar cane treated with calcium oxide, Revista Brasileira de Zootecnia, 39, 2714–2723.CrossRefGoogle Scholar
  5. Carvalho, G.G.P., Garcia, R., Pires, A.J.V., Silva, R.R., Detmann, E., Oliveira, R.L., Ribeiro, L.S.O., 2013a. Long-term bias of internal markers in sheep and goat digestion trials, Asian-Australasian Journal of Animal Sciences, 26, 65–71.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carvalho, G.G.P., Garcia, R., Pires, A.J.V., Silva, R.R., Detmann, E., Eustáquio, Filho A., Ribeiro, L.S.O., Carvalho, L.M. 2013b. Diets based on sugar cane treated with calcium oxide for lambs, Revista Brasileira de Zootecnia, 26, 218–226.Google Scholar
  7. Casali, A.O., Detmann, E., Valadares Filho, S.C., Pereira, J.C., Henriques, L.T., Freitas, S.G., Paulino, M.F., 2008. Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures, Revista Brasileira de Zootecnia, 37, 335–342.CrossRefGoogle Scholar
  8. Detmann, E., Souza, M.A., Valadares Filho, S.C., Queiroz, A.C., Berchielli, T.T., Saliba, E.O.S., Cabral, L.S., Pina, D.S., Ladeira, M.M., Azevedo, J.A.G., 2012. Methods for food analysis - National Institute of Science and Technology of Animal Science, NIST. Visconde do Rio Branco, MG: Suprema, 214 p.Google Scholar
  9. Dove, H., Mayes, R.W., 2005.Using n-alkanes and other plant wax components to estimate intake, digestibility and diet composition of grazing/browsing sheep and goats, Small Ruminant Reseach, 59, 123–139.CrossRefGoogle Scholar
  10. Ferreira, A.M., Valadares Filho, S.C., Silva, L.F.C., Nascimento, F.B., Detmann, E., Valadares, R.F.D., 2009. Prediction of individual dry matter intake in group-fed lactating dairy cows. Revista Brasileira de Zootecnia, 38, 1574–1580.CrossRefGoogle Scholar
  11. Gionbelli, T.R.S., Veloso, C.M., Gionbelli, M.P., Novais, M.A.S., Silva, A.L., Espechit, C.J.B., Campos, J.M.S., Valadares Filho, S.C., Pereira, O.G., Cunha, C.S., Alcântara, P.H., Virgínio Junior, G.F., Duarte, M.S., 2014. Utilization of castor bean meal treated with calcium hydroxide, fed wet or dry, by lambs, Livestock Science, 168, 76–83.CrossRefGoogle Scholar
  12. Gomes, D.I., Detmann, E., Valadares Filho, S.C., Fukushima, R.S., Souza, M.A., Valente, T.N.P., Paulino, M.F., Queiroz, A.C., 2011. Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber, Animal Feed Science and Technology, 168, 206–222.CrossRefGoogle Scholar
  13. Gusha, J., Halimani, T.E., Ngongoni, N.T., Ncube, S., 2015. Effect of feeding cactus-legume silages on nitrogen retention, digestibility and microbial proteins in thesis in goats, Animal Feed Science and Technology, 206, 1–7.CrossRefGoogle Scholar
  14. Hall, M.B., 2003. Challenges with non-fiber carbohydrate methods. Journal of Animal Science 81:3226–3232.Google Scholar
  15. Kanani, J., Philipp, D., Coffey, K.P., Kegley, E.B., West, C.P., Gadberry, S., Jennings, J., Young, A.N., Rhein, R.T., 2015. Diurnal variation in fecal concentrations of acid-detergent insoluble ash and alkaline-peroxide lignin from cattle fed Bermuda grass hays of varying nutrient content, Journal of Animal Science and Biotechnology, 6, 1–6.CrossRefGoogle Scholar
  16. Kozloski, G.V., Mesquita, F.R., Alves, T.P., Castagnino, D.S., Stefanello, C.M., Sanchez, L.M.B., 2009. Evaluation of indigestible feed fractions as internal markers for predicting digestibility in lambs, Revista Brasileira de Zootecnia, 38, 1819–1823.CrossRefGoogle Scholar
  17. Kuwahara, F.A., Souza, G.B., Soares, F.V., Ferreira, R.P., Costa, C., Lima, P.R., 2015. Estimates of in situ digestibility and fibrous compounds in feeds for ruminants, Acta Scientiarum Animal Science, 37, 259–264.CrossRefGoogle Scholar
  18. Licitra, G., Hernandez, T.M., Van Soest, P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feed, Animal Feed Science and Technology, 57, 347–358.CrossRefGoogle Scholar
  19. Mertens D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study, Journal of AOAC International, 85, 1217–1240.PubMedGoogle Scholar
  20. Nicory, I.M.C., Carvalho, G.G.P., Ribeiro, O.L., Santos, S.A., Silva, F.F., Silva, R.R., Lopes, L.S.C., Souza, F.N.C., Freitas Júnior, J.E., 2015. Productive and metabolic parameters in lambs fed diets with castor seed meal, Livestock Science, 181, 171–178.CrossRefGoogle Scholar
  21. Nkosi, B.D., Meeske, R., Langa, T., Motiang, M.D., Modiba, S., Mkhize, N.R., Groenewald, I.B., 2016. Effects of ensiling forage soybean (Glycine max (L.) Merr.) with or without bacterial inoculants on the fermentation characteristics, aerobic stability and nutrient digestion of the silage by Damara rams, Small Ruminant Research, 134, 90–96.CrossRefGoogle Scholar
  22. NRC, 2001. Nutrient requeriments of dairy cattle: Subcommittee on Dairy Cattle Nutrition Committee on Animal Nutrition Board on Agriculture and Natural Resources National Research Council. 7.rev.ed. Washinton, D.C.: National Academy Press. 381.Google Scholar
  23. NRC, 2007. National Research Council. Nutrient requirements of small ruminants: Angora, dairy, and meat goats, (National Academy Press, Washington, DC, USA).Google Scholar
  24. Obeidat, B.S., Mahmouda, K.Z., Maswadeha, J.A., Bsoul, E.Y., 2016. Effects of feeding Atriplexhalimus L. on growth performance and carcass characteristics of fattening Awassi lambs, Small Ruminant Research, 137, 65–70.CrossRefGoogle Scholar
  25. Palmieri, A.D., Carvalho, G.G.P., Tosto, M.S.L., Leite, V.M., Santos, S.A., Borja, M.S., Azevêdo, J.A.G., Freitas Júnior, J.E., Leite, L.C., Ayres, M.C.C., Rufino, L.M.A., 2016. Nutritional and productive performance of goats kids fed diets with detoxified castor meal, Animal Feed Science and Technology, 216, 81–92.CrossRefGoogle Scholar
  26. Santos, A.B., Pereira, M.L.A., Silva, H.G.O., Carvalho, G.G.P., Pereira, T.C.J., Ribeiro, L.S.O., Azevêdo, J.A.G., Silva, M.G.C.P.C., Sousa, L.B., Sousa, L.B., Alencar, D.O., 2016. Intake, digestibility and performance of lambs fed diets containing peach palm meal, Tropical Animal Health Production, 48, 509–515.CrossRefPubMedGoogle Scholar
  27. Silva, A., Silva, R., Carvalho, G., Silva, F., Lins, T., Zeoula, L., Franco, S., Silva, A.P., Carvalho, V., Abreu, G., 2015. Correlation between ingestive behavior and digestibility coefficients of supplemented grazing steers, with or without addition of propolis extract (LLOS®), Journal of Advances in Biology & Biotechnology, 4, 1–12.Google Scholar
  28. Silva, R.V.M.M., Carvalho, G.G.P., Pires, A.J.V., Pereira, M.L.A., Pereira, L., Campos, F.S., Perazzo, A.F., Araújo, M.L.G.M.L., Nascimento, C.O., Santos, S.A., Tosto, M.S.L., Rufino, L.M.A., Carvalho, B.M.A., 2016. Cotton seed cake in substitution of soybean meal in diets for finishing lambs, Small Ruminant Research, 137, 183–188.CrossRefGoogle Scholar
  29. Sniffen, C.J, O'Connor, J.D., van Soest, P.J. et al., 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(12), 3562–3577.Google Scholar
  30. Torres, L.C.L., Ferreira, M.A., Guim, A., Vilela, M.S., Guimarães, A.V., Silva, E.C., 2009. Replacement of giant forage cactus by small forage cactus to growing dairy cattle diets and evaluation of internal markes, Revista Brasileira de Zootecnia, 37, 335–342.Google Scholar
  31. Weiss, W. P., 1999. Energy prediction equations for ruminant feeds. In: Proceedings of the 61st Cornell Nutrition Conference for Feed Manufacturers. Cornell University, Ithaca, 176–185. Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Catarine S. C. da Teixeira
    • 1
  • Gleidson G. P. de Carvalho
    • 1
  • Isis C. M. Nicory
    • 1
  • Aracele V. Santos
    • 1
  • Douglas S. dos Pina
    • 1
  • José E. F. de Júnior
    • 1
  • Maria L. G. M. L. de Araújo
    • 1
  • Luana M. A. de Rufino
    • 2
  • Luís G. A. Cirne
    • 3
  • Aureliano J. V. Pires
    • 4
  1. 1.Federal University of BahiaSalvadorBrazil
  2. 2.Federal University of ParáCastanhalBrazil
  3. 3.Federal University of Oeste of ParáSantarémBrazil
  4. 4.State University of Southeast BahiaItapetingaBrazil

Personalised recommendations