Microscopic Tribology of ADC12 Alloy Under Lubricant Containing ZDDP and MoDTC Using In Situ AFM


Tribofilm growth, friction and wear behaviour are not well understood for non-ferrous alloys under lubricated contacts in the presence of combination of zinc dialkyl dithiophosphates (ZDDPs) and molybdenum dithiocarbamate (MoDTC) lubricant additives. This study is focused on the growth of tribofilms and tribological properties monitored in situ using an atomic force microscopy (AFM)-based approach. Experiments are performed on the Al matrix and Si phase of Al–Si alloy (ADC12) in the presence of ZDDP and MoDTC at high temperature (110 °C). The addition of MoDTC in ZDDP results in relatively thinner tribofilm over Si phase in comparison to ZDDP alone when sliding is performed simultaneously over the Al matrix and Si phase. The antiwear properties are found to be significantly improved when sliding only on the Al matrix. However, friction reduction is observed in both cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Menzie, W.D., Barry, J.J., Bleiwas, D.I., Bray, E.L., Goonan, T.G., Matos, G.: The Global Flow of Aluminum from 2006 Through 2025. US Department of the Interior, US Geological Survey, Reston (2010)

    Google Scholar 

  2. 2.

    Fridlyander, I.N., Sister, V.G., Grushko, O.E., Berstenev, V.V., Sheveleva, L.M., Ivanova, L.A.: Aluminum alloys: promising materials in the automotive industry. Met. Sci. Heat Treat. 44, 365–370 (2002). https://doi.org/10.1023/A:1021901715578

    CAS  Article  Google Scholar 

  3. 3.

    Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004). https://doi.org/10.1023/B:TRIL.0000044495.26882.b5

    CAS  Article  Google Scholar 

  4. 4.

    Mittal, P., Maithani, Y., Pratap, J., Gosvami, N.N.: In situ microscopic study of tribology and growth of ZDDP antiwear tribofilms on an Al–Si alloy. Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2020.106419

    Article  Google Scholar 

  5. 5.

    Lu, R., Shiode, S., Tani, H., Tagawa, N., Koganezawa, S.: A study on the tribofilm growth and tribological properties of tribofilms formed from zinc dialkyl dithiophosphate (ZDDP) and molybdenum dialkyl dithiocarbamate (MoDTC). Tribol. Online. 13, 157–165 (2018). https://doi.org/10.2474/trol.13.157

    Article  Google Scholar 

  6. 6.

    Graham, J., Spikes, H., Jensen, R., Graham, J., Member, H.S., Jensen, R.O.N.: The friction reducing properties of molybdenum dialkyldithiocarbamate additives: part II—durability of friction reducing capability. Tribol. Trans. 44, 637–647 (2008). https://doi.org/10.1080/10402000108982505

    Article  Google Scholar 

  7. 7.

    Graham, J., Spikes, H., Korcek, S., Graham, J., Member, H.S.: The friction reducing properties of molybdenum dialkyldithiocarbamate additives : part I—factors influencing friction reduction. Tribol. Trans. 44, 626–636 (2008). https://doi.org/10.1080/10402000108982504

    Article  Google Scholar 

  8. 8.

    Martin, J.M., Le Mogne, T., Grossiord, C., Palermo, T.: Tribochemistry of ZDDP and MoDDP chemisorbed films. Tribol. Lett. 2, 313–326 (1996). https://doi.org/10.1007/BF00173135

    CAS  Article  Google Scholar 

  9. 9.

    Taylor, P., Yamamoto, Y., Gondo, S.: Friction and wear characteristics of molybdenum dithiocarbamate and molybdenum dithiophosphate. Tribol. Trans. 32, 251–257 (1989). https://doi.org/10.1080/10402008908981886

    Article  Google Scholar 

  10. 10.

    Grossiord, C., Varlot, K., Martin, J., Mogne, T.L., Esnouf, C.: MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1999). https://doi.org/10.1016/S0301-679X(98)00094-2

    Article  Google Scholar 

  11. 11.

    Kasrai, M., Cutler, J.N., Gore, K., Canning, G., Bancroft, G.M., Tan, K.H., Cutler, J.N., Gore, K., Canning, G., Bancroft, G.M., Tan, K.H.: The Chemistry of antiwear films generated by the combination of ZDDP and MoDTC examined by X- ray absorption spectroscopy. Tribol. Trans. 41, 69–77 (1998). https://doi.org/10.1080/10402009808983723

    CAS  Article  Google Scholar 

  12. 12.

    Masayoshi, M., Yoshihiro, Y., Kazuhiko, S.: Synergistic effect on frictional characteristics under rolling–sliding conditions due to a combination of molybdenum dialkyldithiocarbamate and zinc dialkyldithiophosphate. Trans. Indian Inst. Met. 30, 69–75 (1997). https://doi.org/10.1016/0301-679X(96)00025-4

    Article  Google Scholar 

  13. 13.

    Varlot, K., Martin, J.M., Grossiord, C., Vargiolu, R., Vacher, B., Inoue, K.: A dual-analysis approach in tribochemistry: application to ZDDP/calcium borate additive interactions. Tribol. Lett. 6, 181–189 (1999). https://doi.org/10.1023/A:1019167808656

    CAS  Article  Google Scholar 

  14. 14.

    Barros, M.I.D., Bouchet, J., Raoult, I., Le, T., Martin, J.M., Kasrai, M., Yamada, Y.: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254, 863–870 (2003). https://doi.org/10.1016/S0043-1648(03)00237-0

    CAS  Article  Google Scholar 

  15. 15.

    Masuko, M., Ohkido, T., Suzuki, A., Ueno, T.: Fundamental study of changes in friction and wear characteristics due to ZnDTP deterioration in simulating engine oil degradation during use. Tribol. Ser. 43, 359–366 (2003). https://doi.org/10.1016/S0167-8922(03)80063-9

    Article  Google Scholar 

  16. 16.

    Sogawa, Y., Yoshimura, N.: R & D on New Friction Modifier for Lubricant for Fuel economy improvement, Japan Petroleum Energy Centre Report. (1999)

  17. 17.

    Khaemba, D.N., Neville, A., Morina, A.: New insights on the decomposition mechanism of Molybdenum DialkyldiThioCarbamate (MoDTC): a Raman spectroscopic study. RSC Adv. 6, 38637–38646 (2016). https://doi.org/10.1039/C6RA00652C

    CAS  Article  Google Scholar 

  18. 18.

    Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006). https://doi.org/10.1007/s11249-006-9123-7

    CAS  Article  Google Scholar 

  19. 19.

    Okubo, H., Tadokoro, C., Sasaki, S.: In situ Raman–SLIM monitoring for the formation processes of MoDTC and ZDDP tribofilms at steel/steel contacts under boundary lubrication. Tribol. Online. 15, 105–116 (2020). https://doi.org/10.2474/trol.15.105

    Article  Google Scholar 

  20. 20.

    Okubo, H., Yonehara, M., Sasaki, S.: In situ Raman observations of the formation of MoDTC-derived tribofilms at steel/steel contact under boundary lubrication. Tribol. Trans. 61, 1040–1047 (2018). https://doi.org/10.1080/10402004.2018.1462421

    CAS  Article  Google Scholar 

  21. 21.

    Xia, X., Morina, A., Neville, A., Priest, M., Roshan, R., Warrens, C.P., Payne, M.J.: Tribological performance of an Al–Si alloy lubricated in the boundary regime with zinc dialkyldithiophosphate and molybdenum dithiocarbamate additives. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 222, 305–314 (2008). https://doi.org/10.1243/13506501JET377

    CAS  Article  Google Scholar 

  22. 22.

    Neville, A., Morina, A., Haque, T., Voong, M.: Compatibility between tribological surfaces and lubricant additives-how friction and wear reduction can be controlled by surface/lube synergies. Tribol. Int. 40, 1680–1695 (2007). https://doi.org/10.1016/j.triboint.2007.01.019

    CAS  Article  Google Scholar 

  23. 23.

    Morina, A., Xia, X., Neville, A., Priest, M., Roshan, R., Warrens, C.P., Payne, M.J.: Role of friction modifiers on the tribological performance of hypereutectic Al–Si alloy lubricated in boundary conditions. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 225, 369–378 (2011). https://doi.org/10.1177/1350650111399009

    CAS  Article  Google Scholar 

  24. 24.

    Gosvami, N.N., Ma, J., Carpick, R.W.: An in situ method for simultaneous friction measurements and imaging of interfacial tribochemical film growth in lubricated contacts. Tribol. Lett. 66, 1–10 (2018). https://doi.org/10.1007/s11249-018-1112-0

    CAS  Article  Google Scholar 

  25. 25.

    Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 80(348), 102–106 (2015). https://doi.org/10.1126/science.1258788

    CAS  Article  Google Scholar 

  26. 26.

    Gosvami, N.N., Lahouij, I., Ma, J., Carpick, R.W.: Nanoscale in situ study of ZDDP tribofilm growth at aluminum-based interfaces using atomic force microscopy. Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2019.106075

    Article  Google Scholar 

  27. 27.

    Sader, J.E., Larson, I., Mulvaney, P., White, L.R.: Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995). https://doi.org/10.1063/1.1145439

    CAS  Article  Google Scholar 

  28. 28.

    Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004). https://doi.org/10.1063/1.1753100

    CAS  Article  Google Scholar 

  29. 29.

    Hertz, H.: On the elastic contact of elastic bodies. J. Reine Angew. Math. 92, 156–171 (1881)

    Google Scholar 

  30. 30.

    Nicholls, M.A., Norton, P.R., Bancroft, G.M., Kasrai, M.: X-ray absorption spectroscopy of tribofilms produced from zinc dialkyl dithiophosphates on Al–Si alloys. Wear 257, 311–328 (2004). https://doi.org/10.1016/j.wear.2003.12.007

    CAS  Article  Google Scholar 

  31. 31.

    Nicholls, M.A., Norton, P.R., Bancroft, G.M., Kasrai, M., De Stasio, G., Wiese, L.M.: Spatially resolved nanoscale chemical and mechanical characterization of ZDDP antiwear films on aluminum–silicon alloys under cylinder/bore wear conditions. Tribol. Lett. 18, 261–278 (2005). https://doi.org/10.1007/s11249-004-2752-9

    CAS  Article  Google Scholar 

  32. 32.

    Jiménez, A.E., Morina, A., Neville, A., Bermúdez, M.D.: Surface interactions and tribochemistry in boundary lubrication of hypereutectic aluminium–silicon alloys. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 223, 593–601 (2009). https://doi.org/10.1243/13506501JET528

    Article  Google Scholar 

  33. 33.

    Guegan, J., Kadiric, A., Gabelli, A., Spikes, H.: The relationship between friction and film thickness in EHD point contacts in the presence of longitudinal roughness. Tribol. Lett. 64, 1–15 (2016). https://doi.org/10.1007/s11249-016-0768-6

    Article  Google Scholar 

  34. 34.

    Dawczyk, J., Morgan, N., Russo, J., Spikes, H.: Film thickness and friction of ZDDP tribofilms. Tribol. Lett. 67, 1–15 (2019). https://doi.org/10.1007/s11249-019-1148-9

    CAS  Article  Google Scholar 

  35. 35.

    Koinkar, V.N., Bhushan, B.: Effect of scan size and surface roughness on microscale friction measurements. J. Appl. Phys. 81, 2472–2479 (1997). https://doi.org/10.1063/1.363954

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge Prof. Deepak Kumar (ITMMEC, IIT Delhi, India) for providing ADC12, Mr. Rahul Vaish (Total, India) for providing ZDDP additive, Dr. David M. Boudreau (Vanderbilt Chemicals, Norwalk, CT, USA) for providing MoDTC additive and Dr. O. P. Khatri (CSIR-IIP, Dehradun, India) for providing lubricant samples and for useful discussions. Financial supports from SERB (ECR/2016/001014 and CRG/2020/002062) and IIT Delhi are highly acknowledged.


Financial support from SERB (ECR/2016/001014 and CRG/2020/002062) and IIT Delhi are highly acknowledged.

Author information



Corresponding author

Correspondence to Nitya Nand Gosvami.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4702 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mittal, P., Rai, H. & Gosvami, N.N. Microscopic Tribology of ADC12 Alloy Under Lubricant Containing ZDDP and MoDTC Using In Situ AFM. Tribol Lett 69, 35 (2021). https://doi.org/10.1007/s11249-021-01408-y

Download citation


  • ZDDP
  • MoDTC
  • Tribofilm growth
  • Wear
  • Friction
  • Atomic force microscopy