Inducing High-Energy-Barrier Tribochemical Reaction Pathways; Acetic Acid Decomposition on Copper

Abstract

The surface tribological chemistry of acetic acid on copper is studied using an ultrahigh vacuum tribometer, supplemented by first-principles density functional theory calculations of the surface structure and reaction pathways. Acetic acid forms η2-acetate species on bridge sites at room temperature as identified by reflection–absorption infrared spectroscopy. Rubbing the surface with a tungsten carbide ball reduces the amount of carbon and oxygen in the rubbed region at the same rates to leave some carbon and oxygen on the surface. This is different from the thermal decomposition pathway, where heating to ~ 580 K removes all oxygen, but leave a small amount of carbon on the surface. It is postulated that this arises because sliding along a direction aligned within the plane of the adsorbed acetate species can induce a high-energy-barrier pathway in which the η2-acetate tilts to form an η1-acetate that can react to form a bent CO2δ− species that decomposes to evolve carbon monoxide and deposit atomic oxygen on the surface. Repeated acetic acid dosing and rubbing reduces the total amount of acetic acid that can adsorb on the surface by ~ 50% after ~ 4 cycles, resulting is a stable, low-friction film. At this point, the adsorbed acetic acid is completely tribochemically removed. This suggests that adsorbed acetic acid can form a self-healing film in which any wear of the low-friction film will then allow it to be replenished by shear-induced decomposition of adsorbed acetate species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Clayton, D.: An introduction to boundary and extreme pressure lubrication. Br. J. Appl. Phys. 2, 25 (1951)

    Article  Google Scholar 

  2. 2.

    Westlake, F.J., Cameron, A.: A study of ultra-thin lubricant films using an optical technique. Proc. Inst. Mech. Eng. 182, 75–78 (1967)

    Google Scholar 

  3. 3.

    Tonck, A., Martin, J.M., Kapsa, P., Georges, J.M.: Boundary lubrication with anti-wear additives: study of interface film formation by electrical contact resistance. Tribol. Int. 12, 209–213 (1979)

    CAS  Article  Google Scholar 

  4. 4.

    Hsu, S.M., Gates, R.S.: Boundary lubricating films: formation and lubrication mechanism. Tribol. Int. 38, 305–312 (2005)

    CAS  Article  Google Scholar 

  5. 5.

    Spikes, H.: Friction modifier additives. Tribol. Lett. 60, 5 (2015)

    Article  Google Scholar 

  6. 6.

    Simič, R., Kalin, M.: Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Appl. Surf. Sci. 283, 460–470 (2013)

    Article  CAS  Google Scholar 

  7. 7.

    Kano, M., Martin, J.M., Yoshida, K., De Barros-Bouchet, M.I.: Super-low friction of ta-C coating in presence of oleic acid. Friction 2, 156–163 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    De Barros Bouchet, M.I., Martin, J.M., Avila, J., Kano, M., Yoshida, K., Tsuruda, T., et al.: Diamond-like carbon coating under oleic acid lubrication: evidence for graphene oxide formation in superlow friction. Sci. Rep. 7, 46394 (2017)

    Article  CAS  Google Scholar 

  9. 9.

    De Barros Bouchet, M.I., Martin, J.M., Forest, C., le Mogne, T., Mazarin, M., Avila, J., et al.: Tribochemistry of unsaturated fatty acids as friction modifiers in (bio)diesel fuel. RSC Adv. 7, 33120–33131 (2017)

    Article  Google Scholar 

  10. 10.

    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57, 18 (2015)

    Article  CAS  Google Scholar 

  11. 11.

    Lundgren, S.M., Ruths, M., Danerlöv, K., Persson, K.: Effects of unsaturation on film structure and friction of fatty acids in a model base oil. J. Colloid Interface Sci. 326, 530–536 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    Kuwahara, T., Romero, P.A., Makowski, S., Weihnacht, V., Moras, G., Moseler, M.: Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat. Commun. 10, 151 (2019)

    Article  CAS  Google Scholar 

  13. 13.

    Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. J. MRS Bull. 33, 1145–1150 (2008)

    Article  Google Scholar 

  14. 14.

    Furlong, O.J., Miller, B.P., Kotvis, P., Tysoe, W.T.: Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. ACS Appl. Mater. Interfaces. 3, 795–800 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    Furlong, O., Miller, B., Tysoe, W.: Shear-induced surface-to-bulk transport at room temperature in a sliding metal-metal interface. Tribol. Lett. 41, 257–261 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    Furlong, O., Miller, B., Tysoe, W.T.: Shear-induced boundary film formation from dialkyl sulfides on copper. Wear 274–275, 183–187 (2012)

    Article  CAS  Google Scholar 

  17. 17.

    Miller, B., Furlong, O., Tysoe, W.: The kinetics of shear-induced boundary film formation from dimethyl disulfide on copper. Tribol. Lett. 49, 39–46 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    Adams, H.L., Garvey, M.T., Ramasamy, U.S., Ye, Z., Martini, A., Tysoe, W.T.: Shear-induced mechanochemistry: pushing molecules around. J. Phys. Chem. C 119, 7115–7123 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    Adams, H., Miller, B.P., Kotvis, P.V., Furlong, O.J., Martini, A., Tysoe, W.T.: In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol. Lett. 62, 1–9 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    Adams, H., Miller, B.P., Furlong, O.J., Fantauzzi, M., Navarra, G., Rossi, A., et al.: Modeling mechanochemical reaction mechanisms. ACS Appl. Mater. Interfaces. 9, 26531–26538 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    Boscoboinik, A., Olson, D., Adams, H., Hopper, N., Tysoe, W.T.: Measuring and modelling mechanochemical reaction kinetics. Chem. Commun. 56, 7730–7733 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    Miller, B.P., Furlong, O.J., Tysoe, W.T.: Surface chemistry of isopropoxy tetramethyl dioxaborolane on Cu(111). Langmuir 28, 6322–6327 (2012)

    CAS  Article  Google Scholar 

  23. 23.

    Miller, B., Kotvis, P., Furlong, O., Tysoe, W.: Relating molecular structure to tribological chemistry: borate esters on copper. Tribol. Lett. 49, 21–29 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    Rana, R., Tysoe, W.: Tribochemical mechanisms of trimethyl and triethyl phosphite on oxidized iron in ultrahigh vacuum. Tribol. Lett. 67, 93 (2019)

    Article  CAS  Google Scholar 

  25. 25.

    Sexton, B.A.: The structure of acetate species on copper (100). Chem. Phys. Lett. 65, 469–471 (1979)

    CAS  Article  Google Scholar 

  26. 26.

    Bowker, M., Madix, R.J.: The adsorption and oxidation of acetic acid and acetaldehyde on Cu(110). Appl. Surf. Sci. 8, 299–317 (1981)

    CAS  Article  Google Scholar 

  27. 27.

    Fuhrmann, D., Wacker, D., Weiss, K., Hermann, K., Witko, M., Woll, C.: The adsorption of small hydrocarbons on Cu(111): a combined He-atom scattering and x-ray absorption study for ethane, ethylene, and acetylene. J. Chem. Phys. 108, 2651–2658 (1998)

    CAS  Article  Google Scholar 

  28. 28.

    Wühn, M., Weckesser, J., Wöll, C.: Bonding and orientational ordering of long-chain carboxylic acids on Cu(111): investigations using x-ray absorption spectroscopy. Langmuir 17, 7605–7612 (2001)

    Article  CAS  Google Scholar 

  29. 29.

    Immaraporn, B., Ye, P., Gellman, A.J.: The transition state for carboxylic acid deprotonation on Cu(100). J. Phys. Chem. B 108, 3504–3511 (2004)

    CAS  Article  Google Scholar 

  30. 30.

    Karagoz, B., Reinicker, A., Gellman, A.J.: Kinetics and mechanism of aspartic acid adsorption and its explosive decomposition on Cu(100). Langmuir 35, 2925–2933 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    Furlong, O.J., Miller, B.P., Li, Z., Walker, J., Burkholder, L., Tysoe, W.T.: The surface chemistry of dimethyl disulfide on copper. Langmuir 26, 16375–16380 (2010)

    CAS  Article  Google Scholar 

  32. 32.

    Kaltchev, M., Thompson, A.W., Tysoe, W.T.: Reflection-absorption infrared spectroscopy of ethylene on palladium (111) at high pressure. Surf. Sci. 391, 145–149 (1997)

    CAS  Article  Google Scholar 

  33. 33.

    Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31, 99–106 (2008)

    Article  CAS  Google Scholar 

  34. 34.

    Rana, R., Long, D., Kotula, P., Xu, Y., Olson, D., Galipaud, J., et al. Insights into the mechanism of the mechanochemical formation of metastable phases. ACS Appl. Mater. Interfaces. 13, 6785–6794 (2021)

  35. 35.

    Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    CAS  Article  Google Scholar 

  36. 36.

    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    CAS  Article  Google Scholar 

  37. 37.

    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    CAS  Google Scholar 

  38. 38.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Article  Google Scholar 

  39. 39.

    Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  CAS  Google Scholar 

  40. 40.

    Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    CAS  Article  Google Scholar 

  41. 41.

    Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)

    CAS  Article  Google Scholar 

  42. 42.

    Canning, N., Madix, R.J.: Towards an organometallic chemistry of surfaces. J. Phys. Chem. 88, 2437–2446 (1984)

    CAS  Article  Google Scholar 

  43. 43.

    Greenler, R.G.: Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 44, 310–315 (1966)

    CAS  Article  Google Scholar 

  44. 44.

    Greenler, R.G., Snider, D.R., Witt, D., Sorbello, R.S.: The metal-surface selection rule for infrared spectra of molecules adsorbed on small metal particles. Surf. Sci. 118, 415–428 (1982)

    CAS  Article  Google Scholar 

  45. 45.

    Hagman, B., Posada-Borbón, A., Schaefer, A., Shipilin, M., Zhang, C., Merte, L.R., et al.: Steps control the dissociation of CO2 on Cu(100). J. Am. Chem. Soc. 140, 12974–12979 (2018)

    CAS  Article  Google Scholar 

  46. 46.

    Yang, T., Gu, T., Han, Y., Wang, W., Yu, Y., Zang, Y., et al.: Surface orientation and pressure dependence of CO2 activation on Cu surfaces. J. Phys. Chem. C. (2020). https://doi.org/10.1021/acs.jpcc.0c08262

    Article  Google Scholar 

  47. 47.

    Tysoe, W.: On stress-induced tribochemical reaction rates. Tribol. Lett. 65, 48 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Civil, Mechanical and Manufacturing Innovation (CMMI) Division of the National Science Foundation under Grant Number CMMI-2020525 for support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Additional information

Submitted to the special issue in memory of Mark Robbins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Bavisotto, R., Hopper, N. et al. Inducing High-Energy-Barrier Tribochemical Reaction Pathways; Acetic Acid Decomposition on Copper. Tribol Lett 69, 32 (2021). https://doi.org/10.1007/s11249-021-01407-z

Download citation

Keywords

  • Acetic acid
  • Cu(100)
  • Infrared spectroscopy
  • Density functional theory calculations
  • Mechanochemistry
  • Tribochemistry