Tribological Properties of Polytetrafluoroethylene Improved by Incorporation of Fluorinated Graphene with Various Fluorine/Carbon Ratios Under Dry Sliding Condition

Abstract

Fluorinated graphene (FG) with various fluorine/carbon (F/C) ratios and graphene (G) employed as additions were incorporated into the polytetrafluoroethylene (PTFE) matrix aiming to improve the tribological properties of this self-lubricating polymer. The friction coefficients and wear rates of PTFE-based composites were tested under dry sliding condition using a ball-on-disc configuration. The performances of self-lubricity and wear resistance for four fabricated FG/PTFE composites were superior to those of G/PTFE composite, attributable to the specific surface area and chemical composition of FG sheets with various F/C ratios. Among them, the FG/PTFE composite with filler (F/C ≈ 0.5) loading of 5 wt% exhibited the best tribological property, i.e., the lowest friction coefficient (0.131) and the smallest steady-state wear rate (9.20 × 10–16 m3/Nm). This can be attributed to the formation of uniform and complete transfer film on the friction interface via the tribochemical reactions.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Blanchet, T.A., Kennedy, F.E.: Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 153, 229–243 (1992)

    CAS  Google Scholar 

  2. 2.

    Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2007)

    CAS  Google Scholar 

  3. 3.

    Blanchet, T.A., Kandanur, S.S., Schadler, L.S.: Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 40(1), 11–21 (2010)

    CAS  Google Scholar 

  4. 4.

    Bahadur, S., Gong, D.: The action of fillers in the modification of the tribological behavior of polymers. Wear 158, 41–59 (1992)

    CAS  Google Scholar 

  5. 5.

    Zuo, Z., Song, L.Z., Yang, Y.L.: Tribological behavior of polyethersulfone-reinforced polytetrafluoroethylene composite under dry sliding condition. Tribol. Int. 86, 17–27 (2015)

    CAS  Google Scholar 

  6. 6.

    Pan, D., Fan, B.L., Qi, X.W., Yang, Y.L., Hao, X.H.: Investigation of PTFE tribological properties using molecular dynamics simulation. Tribol. Lett. 67, 28 (2019)

    Google Scholar 

  7. 7.

    Zhao, Y.L., Qi, X.W., Zhang, W.L., Fan, B.L., Yang, Q.X.: Effects of copper nanoparticles located in different regions of polytetrafluoroethylene/polyimide blends on the morphology, mechanical and tribological properties of PTFE composites. Tribol. Lett. 67, 18 (2019)

    Google Scholar 

  8. 8.

    Song, L.Z., Han, K.D., Zuo, Z., Yang, Y.L., Wang, X.L.: Tribological properties of α-, and β-manganese dioxide/polytetrafluoroethylene composites under the dry sliding condition. Tribol. Int. 94, 187–197 (2016)

    CAS  Google Scholar 

  9. 9.

    Blanchet, T.A.: A model for polymer composite wear behavior including preferential load support and surface accumulation of filler particulates. Tribol. Trans. 38, 821–828 (1995)

    CAS  Google Scholar 

  10. 10.

    Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P., Schadler, L.S.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254, 573–580 (2003)

    CAS  Google Scholar 

  11. 11.

    Burris, D.L., Sawyer, W.G.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006)

    CAS  Google Scholar 

  12. 12.

    Burris, D.L., Zhao, S., Duncan, R., Lowitz, J., Perry, S.S., Schadler, L.S., Sawyer, W.G.: A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 267, 653–660 (2006)

    Google Scholar 

  13. 13.

    Krick, B.A., Pitenis, A.A., Harris, K.L., Junk, C.P., Sawyer, W.G., Brown, S.C., Rosenfeld, H.D., Kasprzak, D.J., Johnson, R.S., Chan, C.D., Blackman, G.S.: Ultralow wear fluoropolymer composites: nanoscale functionality from microscale fillers. Tribol. Int. 95, 245–255 (2016)

    CAS  Google Scholar 

  14. 14.

    Pitenis, A.A., Ewin, J.J., Harris, K.L., Sawyer, W.G., Krick, B.A.: In vacuo tribological behavior of polytetrafluoroethylene (PTFE) and alumina nanocomposites: the importance of water for ultralow wear. Tribol. Lett. 53, 189–197 (2014)

    CAS  Google Scholar 

  15. 15.

    Pitenis, A.A., Harris, K.L., Junk, C.P., Blackman, G.S., Sawyer, W.G., Krick, B.A.: Ultralow wear PTFE and alumina composites: it is all about tribochemistry. Tribol. Lett. 57, 4 (2015)

    Google Scholar 

  16. 16.

    Harris, K.L., Pitenis, A.A., Sawyer, W.G., Krick, B.A., Blackman, G.S., Kasprzak, D.J., Junk, C.P.: PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48, 3739–3745 (2015)

    CAS  Google Scholar 

  17. 17.

    Kandanur, S.S., Rafiee, M.A., Yavari, F., Schrameyer, M., Yu, Z.Z., Blanchet, T.A., Koratkar, N.: Suppression of wear in graphene polymer composites. Carbon 50(9), 3178–3183 (2012)

    CAS  Google Scholar 

  18. 18.

    Kandanur, S.S., Schrameyer, M.A., Jung, K.F., Makowiec, M.E., Bhargava, S., Blanchet, T.A.: Effect of activated carbon and various other nanoparticle fillers on PTFE wear. Tribol. Trans. 57, 821–830 (2014)

    CAS  Google Scholar 

  19. 19.

    Makowiec, M.E., Blanchet, T.A.: Improved wear resistance of nanotube- and other carbon-filled PTFE composites. Wear 374–375, 77–85 (2017)

    Google Scholar 

  20. 20.

    Bhargava, S., Makowiec, M.E., Blanchet, T.A.: Wear reduction mechanisms within highly wear-resistant graphene- and other carbon-filled PTFE nanocomposites. Wear 444–445, 203163 (2020)

    Google Scholar 

  21. 21.

    Bhargava, S., Koratkar, N., Blanchet, T.A.: Effect of platelet thickness on wear of graphene-polytetrafluoroethylene (PTFE) composites. Tribol. Lett. 59, 17 (2015)

    Google Scholar 

  22. 22.

    Bahadur, S.: The development of transfer layers and their role in polymer tribology. Wear 245, 92–99 (2000)

    CAS  Google Scholar 

  23. 23.

    Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17(1), 31–42 (2014)

    CAS  Google Scholar 

  24. 24.

    Samarakoon, D.K., Chen, Z., Nicolas, C., Wang, X.Q.: Structural and electronic properties of fluorographene. Small 7(7), 965–969 (2011)

    CAS  Google Scholar 

  25. 25.

    Min, C.Y., He, Z.B., Song, H.J., Liang, H.Y., Liu, D.D., Dong, C.K., Jia, W.: Fluorinated graphene oxide nanosheet: a highly efficient water-based lubricated additive. Tribol. Int. 140, 105867 (2019)

    CAS  Google Scholar 

  26. 26.

    Huang, W., Pei, Q.X., Liu, Z., Zhang, Y.W.: Thermal conductivity of fluorinated graphene: a non-equilibrium molecular dynamics study. Chem. Phys. Lett. 552, 97–101 (2012)

    CAS  Google Scholar 

  27. 27.

    Wang, L.F., Ma, T.B., Hu, Y.Z., Wang, H., Shao, T.M.: Ab Initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C 117(24), 12520–12525 (2013)

    CAS  Google Scholar 

  28. 28.

    Rubio-Roy, M., Corbella, C., Bertran, E., Portal, S., Polo, M.C., Pascual, E., Andújar, J.L.: Effects of environmental conditions on fluorinated diamond-like carbon tribology. Diamond Relat. Mater. 18, 923–926 (2009)

    CAS  Google Scholar 

  29. 29.

    Matsumura, K., Chiashi, S., Maruyama, S., Choi, J.: Macroscale tribological properties of fluorinated graphene. Appl. Surf. Sci. 432, 190–195 (2018)

    CAS  Google Scholar 

  30. 30.

    Hou, K.M., Gong, P.P., Wang, J.Q., Yang, Z.G., Ma, L.M., Yang, S.R.: Construction of highly ordered fluorinated graphene composite coatings with various fluorine contents for enhanced lubrication performance. Tribol. Lett. 60, 6 (2015)

    Google Scholar 

  31. 31.

    Ye, X.Y., Liu, X.H., Yang, Z.G., Wang, Z.F., Wang, H.G., Wang, J.Q., Yang, S.R.: Tribological properties of fluorinated graphene reinforced polyimide composite coatings under different lubricated conditions. Compos. A 81, 282–288 (2016)

    CAS  Google Scholar 

  32. 32.

    Zhou, S.G., Li, W.T., Zhao, W.J., Liu, C., Fang, Z.W., Gao, X.L.: Tribological behaviors of polyimide composite films enhanced with fluorographene. Colloids Surf. A 580, 123707 (2019)

    Google Scholar 

  33. 33.

    Li, W.T., Zhao, W.J., Mao, L.S., Zhou, S.G., Liu, C., Fang, Z.W., Gao, X.L.: Investigating the fluorination degree of FG nanosheets on the tribological properties of FG/PI composite coatings. Prog. Org. Coat. 139, 105481 (2020)

    CAS  Google Scholar 

  34. 34.

    Padenko, E., Rooyen, L.J., Karger-Kocsis, J.: Transfer film formation in PTFE/oxyfluorinated graphene nanocomposites during dry sliding. Tribol. Lett. 65(2), 36 (2017)

    Google Scholar 

  35. 35.

    Xu, L., Zheng, Y., Yan, Z., Zhang, W.: Preparation, tribological properties and biocompatibility of fluorinated graphene/ultrahigh molecular weight polyethylene composite materials. Appl. Surf. Sci. 370, 201–208 (2016)

    CAS  Google Scholar 

  36. 36.

    Sun, L., Yan, Z.J., Duan, Y.X., Zhang, J.Y., Liu, B.: Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene. Dent. Mater. 34, 115–127 (2018)

    Google Scholar 

  37. 37.

    Thomas, P., Himmel, D., Mansot, J.L., Dubois, M., Guérin, K., Zhang, W., Hamwi, A.: Tribological properties of fluorinated carbon nanofibres. Tribol. Lett. 34, 49–59 (2009)

    CAS  Google Scholar 

  38. 38.

    Delbé, K., Thomas, P., Himmel, D., Mansot, J.L., Dubois, M., Guérin, K., Delabarre, C., Hamwi, A.: Tribological properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere. Tribol. Lett. 37, 31–41 (2010)

    Google Scholar 

  39. 39.

    Thomas, P., Himmel, D., Mansot, J.L., Zhang, W., Dubois, M., Guérin, K., Hamwi, A.: Friction properties of fluorinated carbon nanodiscs and nanocones. Tribol. Lett. 41, 353–362 (2011)

    CAS  Google Scholar 

  40. 40.

    Thomas, P., Mansot, J.L., Molza, A., Begarin, F., Dubois, M., Guérin, K.: Friction properties of fluorinated graphitized carbon blacks. Tribol. Lett. 56, 259–271 (2014)

    CAS  Google Scholar 

  41. 41.

    Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36(1), 81–87 (2009)

    Google Scholar 

  42. 42.

    Zboril, R., Karlicky, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K.: Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24), 2885–2891 (2010)

    CAS  Google Scholar 

  43. 43.

    Wang, X., Dai, Y.Y., Wang, W.M., Ren, M.M., Li, B.Y., Fan, C., Liu, X.Y.: Fluorographene with high fluorine/carbon ratio: a nanofiller for preparing low-κ polyimide hybrid film. ACS Appl. Mater. Inter. 6, 16182–16188 (2014)

    CAS  Google Scholar 

  44. 44.

    Wu, Y.M., Zhao, W.J., Qiang, Y.J., Chen, Z.J., Wang, L.P., Gao, X.L., Fang, Z.W.: π–π interaction between fluorinated reduced graphene oxide and acridizinium ionic liquid: synthesis and anti-corrosion application. Carbon 159, 292–302 (2020)

    CAS  Google Scholar 

  45. 45.

    Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F.K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., Snow, E.S.: Properties of fluorinated graphene films. Nano Lett. 10(8), 3001–3005 (2010)

    CAS  Google Scholar 

  46. 46.

    Sato, Y., Itoh, K., Hagiwara, R., Fukunaga, T., Ito, Y.: On the so called “semi-ionic” C–F bond character in fluorine-GIC. Carbon 42(15), 3243–3249 (2004)

    CAS  Google Scholar 

  47. 47.

    Lee, J.H., Koon, G.K.W., Shin, D.W., Fedorov, V.E., Choi, J.Y., Yoo, J.B., Ozyilmaz, B.: Property control of graphene by employing “semi-ionic” liquid fluorination. Adv. Funct. Mater. 23, 3329–3334 (2013)

    CAS  Google Scholar 

  48. 48.

    Zhou, S., Sherpa, S.D., Hess, D.W., Bongiorno, A.: Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C 118, 26402–26408 (2014)

    CAS  Google Scholar 

  49. 49.

    Feng, W., Long, P., Feng, Y.Y., Li, Y.: Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3(7), 1500413 (2016)

    Google Scholar 

  50. 50.

    Aderikha, V.N., Shapovalov, V.A.: Effect of filler surface properties on structure, mechanical and tribological behavior of PTFE-carbon black composites. Wear 268(11–12), 1455–1464 (2010)

    CAS  Google Scholar 

  51. 51.

    Saravanan, P., Selyanchyn, R., Tanaka, H., Fujikawa, S., Lyth, S.M., Sugimura, J.: Ultra-low friction between polymers and graphene oxide multilayers in nitrogen atmosphere, mediated by stable transfer film formation. Carbon 122, 395–403 (2017)

    CAS  Google Scholar 

  52. 52.

    Roosendaal, S.J., van Asselen, B., Elsenaar, J.M., Vredenberg, A.M., Habraken, F.H.P.M.: The oxidation state of Fe (100) after initial oxidation in O2. Surf. Sci. 442, 329–337 (1999)

    CAS  Google Scholar 

  53. 53.

    Tan, B.J., Klabunde, K.J., Sherwood, P.M.A.: X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem. Mater. 2, 186–191 (1990)

    CAS  Google Scholar 

  54. 54.

    McIntyre, N.S., Zetaruk, D.G.: X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521–1529 (1977)

    CAS  Google Scholar 

  55. 55.

    Hawn, D.D., DeKoven, B.M.: Deconvalution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 10, 63–74 (1987)

    CAS  Google Scholar 

  56. 56.

    Ci, X.J., Zhao, W.J., Luo, J., Wu, Y.M., Ge, T.H., Shen, L., Gao, X.L., Fang, Z.W.: Revealing the lubrication mechanism of fluorographene nanosheets enhanced GTL-8 based nanolubricant oil. Tribol. Int. 138, 174–183 (2019)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Laizhou Song or Yulin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Song, L., Yang, Y. et al. Tribological Properties of Polytetrafluoroethylene Improved by Incorporation of Fluorinated Graphene with Various Fluorine/Carbon Ratios Under Dry Sliding Condition. Tribol Lett 69, 21 (2021). https://doi.org/10.1007/s11249-020-01398-3

Download citation

Keywords

  • Polytetrafluoroethylene
  • Fluorinated graphene
  • Fluorine/carbon ratio
  • Tribological property
  • Transfer film