Potential-Controlled Boundary Lubrication Using MoS2 Additives in Diethyl Succinate


The active control of friction in oil-based lubricants was realized in the present study with the use of MoS2 particle additives and the application of an electric field. By modifying the surface charging state of the MoS2 particles, the dependence of potential-controlled boundary lubrication behavior on the electrical properties of the particles was demonstrated. For a diethyl succinate lubricant containing negatively charged MoS2 particles, the coefficient of friction (COF) was reduced by 60–70% when a positive potential was applied to a lower friction pair of copper plates. After modification with poly(diallyldimethylammonium chloride), the particles were positively charged, and the COF was reduced with the application of a negative potential. The mechanisms underlying the potential control of the COF were investigated by observing the distributions of the particle additives and characterizing the tribofilms formed at different potentials. Most of the charged particles were locally concentrated near the opposite pole, and this was reversed when the electric field changed. For locally high concentrations of MoS2 particles, a MoS2/MoOx tribofilm with a thickness of 100–500 nm and a loose structure formed on the lower friction pair, which significantly decreased the shear force during the friction process.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Spikes, H.: Friction modifier additives. Tribol. Lett. 60, 1 (2015)

    Article  Google Scholar 

  2. 2.

    Lahouij, I., Vacher, B., Martin, J., Dassenoy, F.: IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear 296(1–2), 558–567 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    Yi, M., Zhang, C.: The synthesis of MoS2 particles with different morphologies for tribological applications. Tribol. Int. 116, 285–294 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., Kim, S.H.: Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 35(2), 127–131 (2009)

    CAS  Article  Google Scholar 

  6. 6.

    Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 18(3), 119–139 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320, 161–178 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    Njiwa, P., Hadj-Aïssa, A., Afanasiev, P., Geantet, C., Bosselet, F., Vacher, B., Belin, M., Le Mogne, T., Dassenoy, F.: Tribological properties of new MoS2 nanoparticles prepared by seed-assisted solution technique. Tribol. Lett. 55(3), 473–481 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    Tannous, J., Dassenoy, F., Lahouij, I., Le Mogne, T., Vacher, B., Bruhács, A., Tremel, W.: Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribol. Lett. 41(1), 55–64 (2011)

    CAS  Article  Google Scholar 

  10. 10.

    Ghaednia, H., Jackson, R.L.: The effect of nanoparticles on the real area of contact, friction, and wear. J. Tribol. 135(4), 10 (2013)

    Article  Google Scholar 

  11. 11.

    Wu, H., Qin, L., Dong, G., Hua, M., Yang, S., Zhang, J.: An investigation on the lubrication mechanism of MoS2 nano sheet in point contact: the manner of particle entering the contact area. Tribol. Int. 107, 48–55 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    Uflyand, I.E., Zhinzhilo, V.A., Burlakova, V.E.: Metal-containing nanomaterials as lubricant additives: state-of-the-art and future development. Friction 7(2), 93–116 (2019)

    Article  Google Scholar 

  13. 13.

    Glavatskih, S., Höglund, E.: Tribotronics—towards active tribology. Tribol. Int. 41(9–10), 934–939 (2008)

    Article  Google Scholar 

  14. 14.

    Krim, J.: Controlling friction with external electric or magnetic fields: 25 examples. Front. Mech. Eng. 5, 22 (2019)

    Article  Google Scholar 

  15. 15.

    He, S., Meng, Y., Tian, Y., Zuo, Y.: Response characteristics of the potential-controlled friction of ZrO2/stainless steel tribopairs in sodium dodecyl sulfate aqueous solutions. Tribol. Lett. 38(2), 169–178 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    Tung, S.C., Wang, S.S.: In-situ electro-charging for friction reduction and wear resistant film formation. Tribol. Trans. 34(4), 479–488 (1991)

    CAS  Article  Google Scholar 

  17. 17.

    Cao, H., Meng, Y.: Electrochemical effect on boundary lubrication of ZDDP additive blended in propylene carbonate/diethyl succinate. Tribol. Int. 126, 229–239 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    Yang, X., Meng, Y., Tian, Y.: Potential-controlled boundary lubrication of stainless steels in non-aqueous sodium dodecyl sulfate solutions. Tribol. Lett. 53, 17–26 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    Zhang, J., Meng, Y., Yu, X.: Control of friction distribution on stainless steel surface in sodium dodecyl sulfate aqueous solution by bipolar electrochemistry. Tribol. Lett. 59(3), 43 (2015)

    Article  Google Scholar 

  20. 20.

    Liu, C., Friedman, O., Meng, Y., Tian, Y., Golan, Y.: CuS nanoparticle additives for enhanced ester lubricant performance. ACS Appl. Nano Mater. 1(12), 7060–7065 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    Rabkin, A., Friedman, O., Golan, Y.: Surface plasmon resonance in surfactant coated copper sulfide nanoparticles: role of the structure of the capping agent. J. Colloid Interface Sci. 457, 43–51 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    Liu, C., Friedman, O., Li, Y., Li, S., Tian, Y., Golan, Y., Meng, Y.: Electric response of CuS nanoparticle lubricant additives: the effect of crystalline and amorphous octadecylamine surfactant capping layers. Langmuir 35(48), 15825–15833 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    Dubas, S.T., Schlenoff, J.B.: Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32(24), 8153–8160 (1999)

    CAS  Article  Google Scholar 

  25. 25.

    Antipov, A.A., Sukhorukov, G.B., Möhwald, H.: Influence of the ionic strength on the polyelectrolyte multilayers' permeability. Langmuir 19(6), 2444–2448 (2003)

    CAS  Article  Google Scholar 

  26. 26.

    Liu, D., Guo, Y., Fang, L., Robertson, J.: Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 103(18), 183113 (2013)

    Article  Google Scholar 

  27. 27.

    Noh, J., Kim, H., Kim, Y.: Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 89, 205417 (2014)

    Article  Google Scholar 

  28. 28.

    Park, J.H., Sanne, A., Guo, Y., Amani, M., Zhang, K., Movva, H.C.P., Robinson, J.A., Javey, A., Robertson, J., Banerjee, S.K., Kummel, A.C.: Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661 (2017)

    Article  Google Scholar 

  29. 29.

    Li, L., Qin, Z., Ries, L., Hong, S., Michel, T., Yang, J., Salameh, C., Bechelany, M., Miele, P., Kaplan, D., Chhowalla, M., Voiry, D.: Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 13(6), 6824–6834 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Wang, H., Liu, Y., Liu, W., Wang, R., Wen, J., Sheng, H., Peng, J., Erdemir, A., Luo, J.: Tribological behavior of NiAl-layered double hydroxide nanoplatelets as oil-based lubricant additives. ACS Appl. Mater. Interfaces 9(36), 30891–30899 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    Zhang, W., Cao, Y., Tian, P., Guo, F., Tian, Y., Zheng, W., Ji, X., Liu, J.: Soluble, exfoliated two-dimensional nanosheets as excellent aqueous lubricants. ACS Appl. Mater. Interfaces 8(47), 32440–32449 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic Press, New York (2011)

    Google Scholar 

  33. 33.

    Turner, N.H., Single, A.M.: Determination of peak positions and areas from wide-scan XPS spectra. Surf. Interface Anal. 15, 215–222 (1990)

    CAS  Article  Google Scholar 

  34. 34.

    Anwar, M., Hogarth, C.A., Bulpett, R.: Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA). J. Mater. Sci. 24(9), 3087–3090 (1989)

    CAS  Article  Google Scholar 

  35. 35.

    Zhao, J., He, Y., Wang, Y., Wang, W., Yan, L., Luo, J.: An investigation on the tribological properties of multilayer graphene and MoS 2 nanosheets as additives used in hydraulic applications. Tribol. Int. 97, 14–20 (2016)

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the Chinese National Key R&D Plan (Grant No. 2016YFE0130300) and by the China-Israel bilateral research program in nanotechnology of the Ministry of Science and Technology of the People’s Republic of China and the Israeli Ministry of Science and Technology, and by the National Natural Science Foundation of China (No. 51961145303). The authors thank Chaolang Chen for the modification method of the MoS2 nanoparticles, Yan He and Qi Pan for the observation of particle motion in suspensions.

Author information



Corresponding author

Correspondence to Yonggang Meng.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5272 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Meng, Y. & Tian, Y. Potential-Controlled Boundary Lubrication Using MoS2 Additives in Diethyl Succinate. Tribol Lett 68, 72 (2020). https://doi.org/10.1007/s11249-020-01313-w

Download citation


  • MoS2 additive
  • Surface design
  • Potential controlled behavior
  • Boundary lubrication
  • Tribofilm