Improving the Lubrication of Silicon Surfaces Using Ionic Liquids as Oil Additives: The Effect of Sulfur-Based Functional Groups

Abstract

The performance of micro/nanoelectromechanical systems (MEMS/NEMS) relies on efficient lubrication. In the present work, new sulfur-based organic salts were tested as additives in a polyethylene glycol to lubricate silicon surfaces used in the manufacture of MEMS/NEMS. Seven salts were tested: 1-butylsulfonic-3-methylimidazolium triflate [(C4SO3H)MIM][TfO], thiamine triflate [Thiamine][TfO]2, 1-ethyl-3-methylimidazolium camphorsulfonate [C2MIM][CSA] [isomers (R) and (S)], 1,3-dimethylpiridinium methylsulfate [C1-3pic][MeSO4], methylimidazolium methanesulfonate [HMIM][MeSO3], and tetramethylguanidine methanesulfonate [TMG][MeSO3]. A nanotribometer was used to determine the friction coefficients using steel spheres as counter bodies. Excellent tribological properties were achieved with the additives containing the anions [MeSO4] and [MeSO3]. The films formed on the Si substrates were studied by FTIR, ellipsometry and AFM. A mixed lubrication mechanism was proposed where additive adsorption avoids contact between sliding surfaces.

Graphical Abstract

Sulfur-based organic salts as additives in the base oil PEG200 significantly improve the lubrication of silicon surfaces used in MEMS/NEMS

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ye, C., Liu, W., Chen, Y., Yu, L.: Room temperature ionic liquids: a novel versatile lubricant. Chem. Commun. 21, 2244–2245 (2001). https://doi.org/10.1039/B106935G

    Article  Google Scholar 

  2. 2.

    Phillips, B.S., Mantz, R.A., Trulove, P.C., Zabinsk, J.S.: Surface chemistry and tribological behaviour of ionic liquid boundary lubrication additives. In: Rogers, R., et al. (eds.) Water in ionic liquids IIIA: fundamental, progress, challenges, and opportunities, ACS Symposium Series. American Chemical Society, Washington DC (2005)

    Google Scholar 

  3. 3.

    Qu, J., Truhan, J.J., Dai, S.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006). https://doi.org/10.1007/s11249-006-9081-0

    CAS  Article  Google Scholar 

  4. 4.

    Minami, I.: Ionic liquids in tribology. Molecules 14, 2286–2305 (2009). https://doi.org/10.3390/molecules14062286

    CAS  Article  Google Scholar 

  5. 5.

    Bermúdez, M.D., Jiménez, A.E., Sanes, J., Carrión, F.J.: Ionic liquids as advanced lubricant fluids. Molecules 14, 2888–2908 (2009). https://doi.org/10.3390/molecules14082888

    CAS  Article  Google Scholar 

  6. 6.

    Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009). https://doi.org/10.1039/b817899m

    CAS  Article  Google Scholar 

  7. 7.

    Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9, 3209–3222 (2017). https://doi.org/10.1021/acsami.6b12489

    CAS  Article  Google Scholar 

  8. 8.

    Otero, I., López, E.R., Reichelt, M., Villanueva, M., Salgado, J., Fernandez, J.: Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact. ACS Appl. Mater. Interfaces 6, 13115–13128 (2014). https://doi.org/10.1021/am502980m

    CAS  Article  Google Scholar 

  9. 9.

    Somers, A.E., Khemchandani, B., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: Ionic liquids as antiwear additives in base oils: influence of structure on miscibility and antiwear performance for steel on aluminum. ACS Appl. Mater. Interfaces 22, 11544–11553 (2013). https://doi.org/10.1021/am4037614

    CAS  Article  Google Scholar 

  10. 10.

    Jiménez, A.E., Bermúdez, M.D., Iglesias, P., Carrión, F.J., Martínez-Nicolás, G.: 1-N-alkyl -3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel–aluminium contacts. Wear 260, 766–782 (2006). https://doi.org/10.1016/j.wear.2005.04.016

    CAS  Article  Google Scholar 

  11. 11.

    Jiménez, A.E., Bermudez, M.D.: Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium–steel lubrication. Wear 265, 787–798 (2008). https://doi.org/10.1016/j.wear.2008.01.009

    CAS  Article  Google Scholar 

  12. 12.

    Jiménez, A.E., Bermudez, M.D.: Short alkyl chain imidazolium ionic liquid additives in lubrication of three aluminium alloys with synthetic ester oil. Mater. Surf. Interfaces 6, 109–115 (2012). https://doi.org/10.1179/1751584X12Y.0000000011

    CAS  Article  Google Scholar 

  13. 13.

    Cai, M., Zhao, Z., Liang, Y., Zhou, F., Liu, W.: Alkyl imidazolium ionic liquids as friction reduction and anti-wear additive in polyurea grease for steel/steel contacts. Tribol. Lett. 40, 215–224 (2010). https://doi.org/10.1007/s11249-010-9624-2

    CAS  Article  Google Scholar 

  14. 14.

    Cai, M., Liang, Y., Yao, M., Xia, Y., Zhou, F., Liu, W.: Imidazolium ionic liquids as antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel contacts. ACS Appl. Mater. Interfaces 2, 870–876 (2010). https://doi.org/10.1021/am900847j

    CAS  Article  Google Scholar 

  15. 15.

    Cai, M., Liang, Y., Zhou, F., Liu, W.: Tribological properties of novel imidazolium ionic liquids bearing benzotriazole group as the antiwear/anticorrosion additive in poly(ethylene glycol) and polyurea grease for steel/steel contacts. ACS Appl. Mater. Interfaces 3, 4580–4592 (2011). https://doi.org/10.1021/am200826b

    CAS  Article  Google Scholar 

  16. 16.

    Cai, M., Liang, Y., Zhou Liu, F.W.: A novel imidazolium salt with antioxidation and anticorrosion dual functionalities as the additive in poly(ethylene glycol) for steel/steel contacts. Wear 306, 197–208 (2013). https://doi.org/10.1016/j.wear.2012.09.001

    CAS  Article  Google Scholar 

  17. 17.

    Battez, A.H., Bartolomé, M., Blanco, D., Viesca, J.L., Fernández-González, A., González, R.: Phosphonium cation-based ionic liquids as neat lubricants: physicochemical and tribological performance. Tribol. Int. 95, 118–131 (2016). https://doi.org/10.1016/j.triboint.2015.11.015

    CAS  Article  Google Scholar 

  18. 18.

    Gutierrez, M.A., Haselkorn, M., Iglesias, P.: The lubrication ability of ionic liquids as additives for wind turbine gearboxes oils. Lubricants 4, 14–26 (2016). https://doi.org/10.3390/lubricants4020014

    Article  Google Scholar 

  19. 19.

    Barnhill, W.C., Luo, H., Meyer, H.M., Ma, C., Chi, M., Papke, B.L., Qu, J.: Tertiary and quaternary ammonium-phosphate ionic liquids as lubricant additives. Tribol. Lett. 63, 22–33 (2016). https://doi.org/10.1007/s11249-016-0707-6

    CAS  Article  Google Scholar 

  20. 20.

    Khatri, P.K., Joshi, C., Thakre, G.D., Jain, S.: Halogen-free ammonium–organoborate ionic liquids as lubricating additives: the effect of alkyl chain lengths on the tribological performance. New J. Chem. 40, 5294–5299 (2016). https://doi.org/10.1039/C5NJ02225H

    CAS  Article  Google Scholar 

  21. 21.

    Gusain, R., Bakshi, P.S., Panda, S., Sharma, O.P., Gardas, R., Khatri, O.P.: Physicochemical and tribophysical properties of trioctylalkylammonium bis(salicylato)borate (N888n-BScB) ionic liquids: effect of alkyl chain length. Phys. Chem. Chem. Phys. 19, 6433–6442 (2017). https://doi.org/10.1039/C6CP05990B

    CAS  Article  Google Scholar 

  22. 22.

    Kahn, A., Gusain, R., Khatri, P.K.: Organophosphate anion based low viscosity organic liquids as oil-miscible additives for lubrication enhancement. J. Mol. Liq. 272, 430–438 (2018). https://doi.org/10.1016/j.molliq.2018.09.113

    CAS  Article  Google Scholar 

  23. 23.

    Yu, Q., Zhang, C., Dong, R., Shi, Y., Wang, Y., Bai, Y., Zhang, J., Cai, M., Zhou, F.: Novel N-, P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance. Tribol. Int. 132, 118–129 (2019). https://doi.org/10.1016/j.triboint.2018.12.002

    CAS  Article  Google Scholar 

  24. 24.

    Huang, G., Yu, Q., Ma, Z., Cai, M., Zhou, F., Liu, W.: Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contact. Friction 7, 18–31 (2019). https://doi.org/10.1007/s40544-017-0180-8

    CAS  Article  Google Scholar 

  25. 25.

    Hayes, R., Imberti, S., Warr, G.G., Atkin, R.: The nature of hydrogen bonding in protic ionic liquids. Angew. Chem. Int. 52, 4623–4627 (2013). https://doi.org/10.1002/anie.201209273

    CAS  Article  Google Scholar 

  26. 26.

    Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Tribol. Lett. 22, 207–214 (2006). https://doi.org/10.1021/cr068040u

    CAS  Article  Google Scholar 

  27. 27.

    Patel, A., Guo, H., Iglesias, P.: Study of the lubricating ability of protic ionic liquid on an aluminum-steel contact. Lubricants 6, 66 (2018). https://doi.org/10.3390/lubricants6030066

    Article  Google Scholar 

  28. 28.

    Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006). https://doi.org/10.1007/s11249-006-9081-0

    CAS  Article  Google Scholar 

  29. 29.

    Vega, M.R.O., Parise, K., Ramos, L.B., Boff, U., Mattedi, S., Schaeffer, L., Malfatti, C.F.: Protic ionic liquids used as metal-forming green lubricants for aluminum: effect of anion chain length. Mater. Res. 20, 675–687 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0626

    CAS  Article  Google Scholar 

  30. 30.

    Espinosa, T., Sanes, J., Jiménez, A.E., Bermúdez, M.: Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper. Appl. Surf. Sci. 273, 578–597 (2013). https://doi.org/10.1016/j.apsusc.2013.02.083

    CAS  Article  Google Scholar 

  31. 31.

    Espinosa, T., Sanes, J., Jiménez, A.E., Bermúdez, M.: Protic ammonium carboxylate ionic liquid lubricants of OFHC copper. Wear 303, 495–509 (2013). https://doi.org/10.1016/j.wear.2013.03.041

    CAS  Article  Google Scholar 

  32. 32.

    Ortega Vega, M.R., Kunst, S.R., Da Silva, J.A., Mattedi, S., de Malfatti Fraga, C.: Influence of anion chain length of protic ionic liquids on the corrosion resistance of API X70 steel. Corros. Eng. Sci. Technol. (2015). https://doi.org/10.1179/1743278215Y.0000000008

    Article  Google Scholar 

  33. 33.

    Mo, Y., Zhao, W., Zhu, M., Bai, M.: Nano/microtribological properties of ultrathin functionalized imidazolium wear-resistant ionic liquid films on single crystal silicon. Tribol. Lett. 32, 143–151 (2008). https://doi.org/10.1007/s11249-008-9371-9

    CAS  Article  Google Scholar 

  34. 34.

    Zhu, M., Yan, J., Mo, Y., Bai, M.: Effect of the anion on the tribological properties of ionic liquid nano-films on surface-modified silicon wafers. Tribol. Lett. 29, 177–183 (2008). https://doi.org/10.1007/s11249-007-9294-x

    CAS  Article  Google Scholar 

  35. 35.

    Palacio, M., Bhushan, B.: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv. Mater. 20, 1194–1198 (2008). https://doi.org/10.1002/adma.200702006

    CAS  Article  Google Scholar 

  36. 36.

    Mo, Y., Huang, F., Zhao, F.: Functionalized imidazolium wear-resistant ionic liquid ultrathin films for MEMS/NEMS applications. Surf. Interface Anal. 43, 1006–1014 (2011). https://doi.org/10.1002/sia.3684

    CAS  Article  Google Scholar 

  37. 37.

    Cosme, J., Bastos, P.D.A., Catela, I., Silva, D., Colaço, R., Branco, L.C., Saramago, B.: Task–specific ionic liquids based on sulfur for tribological applications. ChemistrySelect. 1, 3612–3617 (2016). https://doi.org/10.1002/slct.201600880

    CAS  Article  Google Scholar 

  38. 38.

    Arcifa, A., Rossi, A., Spencer, N.: Adsorption and tribochemical factors affecting the lubrication of silicon-based materials by (fluorinated) ionic liquids. J. Phys. Chem. C 121, 7259–7275 (2017). https://doi.org/10.1021/acs.jpcc.6b13028

    CAS  Article  Google Scholar 

  39. 39.

    Xie, G., Wang, Q., Si, L., Liu, S., Li, G.: Tribological characterization of several silicon-based materials under ionic-liquids lubrication. Tribol. Lett. 36, 247–257 (2009). https://doi.org/10.1007/s11249-009-9480-0

    CAS  Article  Google Scholar 

  40. 40.

    Li, H., Cooper, P.K., Somers, A.E., Rutland, M.W., Howlett, P.C., Forsyth, M., Atkin, R.: Ionic liquid adsorption and nanotribology at the silica-oil interface: hundred-fold dilution in oil lubricates as effectively as the pure ionic liquid. Phys. Chem. Lett. 5, 4095–4099 (2014). https://doi.org/10.1021/jz5021422

    CAS  Article  Google Scholar 

  41. 41.

    Li, H., Somers, A.E., Howlett, P.C., Rutland, M.W., Forsyth, M., Atkin, R.: Addition of low concentrations of an ionic liquid to a base oil reduces friction over multiple length scales: a combined nano- and macrotribology investigation. Phys. Chem. Chem. Phys. 18, 6541–6547 (2016). https://doi.org/10.1039/C5CP07061A

    CAS  Article  Google Scholar 

  42. 42.

    Amorim, P.M., Ferraria, A.M., Colaço, R., Branco, L.C., Saramago, B.: Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces. Beilstein J. Nanotechnol 8, 1961–1971 (2017). https://doi.org/10.3762/bjnano.8.197

    CAS  Article  Google Scholar 

  43. 43.

    Pejakovic, V., Kronberger, M., Mahrova, M., Vilas, M., Tojo, E., Kalin, M.: Pyrrolidinium sulfate and ammonium sulfate ionic liquids as lubricant additives for steel/steel contact. Proc. Inst. Mech. Eng. J 226, 923–932 (2012). https://doi.org/10.1177/1350650112448978

    CAS  Article  Google Scholar 

  44. 44.

    Pejaković, V., Tomastik, C., Dörr, N., Kalin, M.: Influence of concentration and anion alkyl chain length on tribological properties of imidazolium sulfate ionic liquids as additives to glycerol in steel–steel contact lubrication. Tribol. Int. 97, 234–243 (2016). https://doi.org/10.1016/j.triboint.2016.01.034

    CAS  Article  Google Scholar 

  45. 45.

    Perkin, S., Albrecht, T., Klein, J.: Layering and shear properties of an ionic liquid,1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Phys. Chem. Chem. Phys. 12, 1243–1247 (2010). https://doi.org/10.1039/B920571C

    CAS  Article  Google Scholar 

  46. 46.

    Espinosa, T., Sanes, J., Bermúdez, M.: New Alkylether-Thiazolium room-temperature ionic liquid lubricants: surface interactions and tribological performance. ACS Appl. Mater. Interfaces 8, 18631–18639 (2016). https://doi.org/10.1021/acsami.6b05888

    CAS  Article  Google Scholar 

  47. 47.

    Rudnick, L.R.: Lubricant additives: chemistry and applications. CRC Press, Boca Raton (2017)

    Google Scholar 

  48. 48.

    Antunes, M., Campinhas, A.S., Freire, M.S., Caetano, F., Diogo, H.P., Colaço, R., Branco, L.C., Saramago, B.: Deep eutectic solvents (DES) based on sulfur as alternative lubricants for silicon surfaces. J. Mol. Liq. 295, 111728 (2019). https://doi.org/10.1016/j.molliq.2019.111728

    CAS  Article  Google Scholar 

  49. 49.

    Sundararajan, S., Bhushan, B.: Micro/nanoscale tribology of mems materials, lubricants and devices. Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales, p. 821. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-010-0736-8_60

    Google Scholar 

  50. 50.

    Restolho, J., Mata, J.L., Saramago, B.: On the interfacial behavior of ionic liquids: surface tensions and contact angles. J. Colloid Interface Sci. 340, 82–86 (2009). https://doi.org/10.1016/j.jcis.2009.08.013

    CAS  Article  Google Scholar 

  51. 51.

    Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 25, 6170–6178 (2003). https://doi.org/10.1021/jp0275894

    CAS  Article  Google Scholar 

  52. 52.

    Pramanik, S., Ataollahi, F., Pingguan-Murphy, B., Oshkour Osman, N.A.A.: In vitro study of surface modified Poly(ethylene glycol)-impregnated Sintered bovine bone scaffolds on human fribrobast cells. Sci. Rep. 5, 9806 (2015). https://doi.org/10.1038/srep09806

    CAS  Article  Google Scholar 

  53. 53.

    Smith, B.C.: Infrared spectral interpretation-a systematic approach. CRC Press, Boca Raton (1998)

    Google Scholar 

  54. 54.

    Paschoal, V., Faria, L., Ribeiro, M.: Vibrational spectroscopy of ionic liquids. Chem. Rev. 117, 7053–7112 (2017). https://doi.org/10.1021/acs.chemrev.6b00461

    CAS  Article  Google Scholar 

  55. 55.

    Reddy, M.V., Valasani, K.R., Lim, K.T., Jeong, Y.: TetraMethylguanidinium chlorosulfonate ionic liquid (TMG IL): an efficient reusable catalyst for the synthesis of tetrahydro-1H-benzo[a]chromeno[2,3-c]phenazin-1-ones under solvent-free conditions and evaluation for their in vitro bioassay activity. New J. Chem. 39, 9931–9941 (2015). https://doi.org/10.1039/C5NJ01866H

    CAS  Article  Google Scholar 

  56. 56.

    Kuroha, M., Gotoh, H., Miran, M.S., Yasuda, T., Watanabe, M., Sakakibara, K.: Proton-conductivity-enhancing Ionic Liquid consisting of guanidine and excess trifluoromethanesulfonic acid. Chem. Lett. 43, 649–651 (2014). https://doi.org/10.1246/cl.131177

    CAS  Article  Google Scholar 

  57. 57.

    Hamrock, B.J., Dowson, D.: ElastoHydrodynamic lubrication of point contacts. Part III fully flooded results. J. Lubr. Technol. 99, 264–275 (1977). https://doi.org/10.1115/1.3453074

    CAS  Article  Google Scholar 

  58. 58.

    Gupta, A.K., Verma, Y.L., Singh, R.K., Chandra, S.: Studies on an Ionic liquid confined in silica nanopores: change in Tg and evidence of organic-inorganic linkage at the pore wall surface. J. Phys. Chem. C 118, 1530–1539 (2014). https://doi.org/10.1021/jp408142a

    CAS  Article  Google Scholar 

  59. 59.

    Singh, M.P., Singh, R.K., Chandra, S.: Studies on imidazolium-based ionic liquids having a large anion confined in a nanoporous silica gel matrix. J. Phys. Chem. B 115, 7505–7514 (2011). https://doi.org/10.1021/jp2003358

    CAS  Article  Google Scholar 

  60. 60.

    Stachowiak, G., Batchelor, A.: Engineering tribology. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the projects UID/QUI/00100/2019, UID/QUI/50006/2019, UIDB/00100/2020, UID/NAN/50024/2013, PEst-C/LA0006/2013, and UID/EMS/50022/2019 (LAETA). L. C. Branco and M. C. Donato thank to financial support of FCT/MCTES through grants IF/0041/2013/CP1161/CT00 and SFRH/BD/140079/2018, respectively.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Luís C. Branco or Benilde Saramago.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11473 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antunes, M., Donato, M.T., Paz, V. et al. Improving the Lubrication of Silicon Surfaces Using Ionic Liquids as Oil Additives: The Effect of Sulfur-Based Functional Groups. Tribol Lett 68, 70 (2020). https://doi.org/10.1007/s11249-020-01308-7

Download citation

Keywords

  • Ionic liquids
  • Additives
  • Silicon
  • Friction coefficient