Skip to main content
Log in

Influence of Hydrocarbon Base Oil Molecular Structure on Lubricating Properties in Nano-scale Thin Film

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In nano-scale thin film, the lubricant molecular structure may have more significant impact to lubricating performance than in bulk states. In order to investigate the influence of hydrocarbon base oil molecular structure to lubricating properties, three base oil samples with different molecular structure were synthesized in this study, the molecular structure was detected. Film thickness and friction coefficient were measured by EHD2 ultra thin film measurement system, and wear scar was evaluated by four-ball tester. The base oil with linear molecular structure show lower film thickness and friction coefficient, even the base oil has higher viscosity and viscosity index than other samples, while the branched structure makes the molecule more rigid than linear one, which increase the film thickness and friction coefficient. The linear molecules with high viscosity index sustained oil film at high temperature, which reduced the wear scar.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown, S.F.: Base oil groups: manufacture, properties and performance. Tribol. Lubr. Technol. 71, 32–35 (2015)

    Google Scholar 

  2. Knothe, G., Steidley, K.R.: Kinematic viscosity of biodiesel fuel components and related compounds, Influence of compound structure and comparison to petrodiesel fuel components. Fuel (2005). https://doi.org/10.1016/j.fuel.2005.01.016

    Article  Google Scholar 

  3. Weijun, W., Jun, L., Yifeng, H., Hongwei, S., Songbai, T., Hui, Z.: Influence of different hydrocarbon molecules on physical properties of mineral base oils. China Pet. Process Petrochem. Technol. 19, 33–45 (2017)

    Google Scholar 

  4. Adhvaryu, A., Erhan, S.Z., Sahoo, S.K., Singh, I.D.: Thermo-oxidative stability studies on some new generation API group II and III base oils. Fuel (2002). https://doi.org/10.1016/s0016-2361(01)00210-1

    Article  Google Scholar 

  5. Sarpal, A.S., Sastry, M.I.S., Bansal, V., Singh, I., Mazumdar, S.K., Basu, B.: Correlation of structure and properties of groups I to III base oils. Lubr. Sci. (2012). https://doi.org/10.1002/ls.1172

    Article  Google Scholar 

  6. Kobayashi, M., Saitoh, M., Ishida, K., Yachi, H.: Viscosity properties and molecular structure of lube base oil prepared from fischer-tropsch waxes. J. Jpn. Pet. Inst. 48, 365–372 (2005)

    Article  CAS  Google Scholar 

  7. Velkavrh, I., Kalin, M.: Comparison of the effects of the lubricant-molecule chain length and the viscosity on the friction and wear of diamond-like-carbon coatings and steel. Tribol. Int. (2012). https://doi.org/10.1016/j.triboint.2012.01.008

    Article  Google Scholar 

  8. LaFountain, A.R., Johnston, G.J., Spikes, H.A.: The elastohydrodynamic traction of synthetic base oil blends. Tribol. Trans. (2001). https://doi.org/10.1080/10402000108982506

    Article  Google Scholar 

  9. Zhang, J., Tan, A., Spikes, H.A.: Effect of base oil structure on elastohydrodynamic friction. Tribol. Lett. (2017). https://doi.org/10.1007/s11249-016-0791-7

    Article  Google Scholar 

  10. Hsu, S.M., Gates, R.S.: Boundary lubricating films: formation and lubrication mechanism. Tribol. Int. (2005). https://doi.org/10.1016/j.triboint.2004.08.021

    Article  Google Scholar 

  11. Adhvaryu, A., Biresaw, G., Sharma, B.K., Erhan, S.Z.: Friction behavior of some seed oils: biobased lubricant applications. Ind. Eng. Chem. Res. (2006). https://doi.org/10.1021/ie051259z

    Article  Google Scholar 

  12. Adhvaryu, A., Erhan, S.Z., Singh, I.D.: Application of quantitative 13C nuclear magnetic resonance spectroscopy to the characterization of solvent-refined aromatic-rich lubricant base oils. Lubr. Sci. (2002). https://doi.org/10.1002/ls.3010150102

    Article  Google Scholar 

  13. Zhang, X.A., Zhao, Y., Ma, K., Wang, Q.: Friction behavior and wear protection ability of selected base lubricants. Friction (2016). https://doi.org/10.1007/s40544-016-0106-x

    Article  Google Scholar 

  14. Liu, P., Lu, J., Yu, H., Ren, N., Lockwood, F.E., Wang, Q.J.: Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations. J. Chem. Phys. (2017). https://doi.org/10.1063/1.4986552

    Article  Google Scholar 

  15. Ning, Y.N., LI, M.J., Jiang, T.: Research of 1-butent oligomer catalyzed by bis (n-butycyclopentadienyl) zirconium dichloride. Chem. Eng. 28, 70–73 (2014)

    CAS  Google Scholar 

  16. Gingell, R., Bennick, J.E., Malley, L.A.: Subchronic inhalation study of 1-hexene in fischer 344 rats. Drug Chem. Toxicol. (1999). https://doi.org/10.3109/01480549909042529

    Article  Google Scholar 

  17. Wang, W., Jiang, S., Shen, Y., Xia, S., Xu, J.: Synthesis of high viscosity index base stock and study on the lubricating properties. Ind. Lubr. Tribol. (2016). https://doi.org/10.1108/ilt-02-2015-0020

    Article  Google Scholar 

  18. Spikes, H.A., Cann, P.M.: The development and application of the spacer layer imaging method for measuring lubricant film thickness. Proc. Inst. Mech. Eng. Part J (2001). https://doi.org/10.1243/1350650011543529

    Article  Google Scholar 

  19. Cann, P.M., Spikes, H.A., Hutchinson, J.: The development of a spacer layer imaging method (slim) for mapping elastohydrodynamic contacts. Tribol. Trans. (1996). https://doi.org/10.1080/10402009608983612

    Article  Google Scholar 

  20. Shea, T.M., Gunsel, S.: Modeling base oil properties using NMR spectroscopy and neural networks. Tribol. Trans. (2003). https://doi.org/10.1080/10402000308982629

    Article  Google Scholar 

  21. Biresaw, G., Bantchev, G.B.: Pressure viscosity coefficient of vegetable. Oils Tribol. Lett. (2013). https://doi.org/10.1007/s11249-012-0091-9

    Article  Google Scholar 

  22. Kioupis, L.I., Maginn, E.J.: Impact of molecular architecture on the high-pressure rheology of hydrocarbon fluids. J. Phys. Chem. (2000). https://doi.org/10.1021/jp000966x

    Article  Google Scholar 

  23. Muraki, M.: Molecular structure of synthetic hydrocarbon oils and their rheological properties governing traction characteristics. Tribol. Int. (1987). https://doi.org/10.1016/0301-679X(87)90063-6

    Article  Google Scholar 

  24. Biresaw, G., Bantchev, G.B.: Pressure viscosity coefficient of vegetable oils. Tribol. Lett. (2013). https://doi.org/10.1007/s11249-012-0091-9

    Article  Google Scholar 

  25. Greaves, M.: Pressure viscosity coefficients and traction properties of synthetic lubricants for wind turbine gear systems. Lubr. Sci. (2012). https://doi.org/10.1002/ls.172

    Article  Google Scholar 

  26. Cousseau, T., Björling, M., Graça, B., Campos, A., Seabra, J., Larsson, R.: Film thickness in a ball-on-disc contact lubricated with greases, bleed oils and base oils. Tribol. Int. (2012). https://doi.org/10.1016/j.triboint.2012.04.018

    Article  Google Scholar 

  27. Yasuda, K., Armstrong, R., Cohen, R.: Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta (1981). https://doi.org/10.1007/bf01513059

    Article  Google Scholar 

  28. Castillo-Tejas, J., Alvarado, J.F., González-Alatorre, G., Luna-Bárcenas, G., Sanchez, I.C., Macias-Salinas, R., Manero, O.: Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip. J. Chem. Phys. (2005). https://doi.org/10.1063/1.1955524

    Article  Google Scholar 

  29. Granick, S.: Motions and relaxations of confined liquids. Science (1991). https://doi.org/10.1126/science.253.5026.1374

    Article  Google Scholar 

  30. Suraya, A.R., Luckham, P.F., Lawrence, C.J.: Shear thinning and frequency dependent behaviour of adsorbed polymer layers: part I. experimental aspects and a first order analysis. J. Non-Newtonian Fluid Mech. (2008). https://doi.org/10.1016/j.jnnfm.2007.04.016

    Article  Google Scholar 

  31. Bair, S., Vergne, P., Querry, M.: A unified shear-thinning treatment of both film thickness and traction in EHD. Tribol. Lett. (2005). https://doi.org/10.1007/s11249-004-1770-y

    Article  Google Scholar 

  32. Liu, Y., Wang, Q.J., Krupka, I., Hartl, M., Bair, S.: The shear-thinning elastohydrodynamic film thickness of a two-component mixture. J. Tribol. (2008). https://doi.org/10.1115/1.2842298

    Article  Google Scholar 

  33. Zolper, T.J., He, Y., Delferro, M., Shiller, P., Doll, G., LotfizadehDehkordi, B., Ren, N., Lockwood, F., Marks, T.J., Chung, Y., Greco, A., Erdemir, A., Wang, Q.: Investigation of shear-thinning behavior on film thickness and friction coefficient of polyalphaolefin base fluids with varying olefin copolymer content. J. Tribol. (2017). https://doi.org/10.1115/1.4033716

    Article  Google Scholar 

  34. Guangteng, G., Spikes, H.A.: Boundary film formation by lubricant base fluids. Tribol. Trans. (1996). https://doi.org/10.1080/10402009608983551

    Article  Google Scholar 

  35. Zolper, T.J., Seyam, A.M., Chen, C., Jungk, M., Stammer, A., Stoegbauer, H., Marks, J.T., Chung, Y., Wang, Q.: Lubrication properties of polyalphaolefin and polysiloxane lubricants: molecular structure-tribology relationships. Tribol. Lett. (2013). https://doi.org/10.1007/s11249-012-0030-9

    Article  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Shandong Province (CN) [Grant No. ZR2019BEE073].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Wang or Xiao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, P., Sheng, S. et al. Influence of Hydrocarbon Base Oil Molecular Structure on Lubricating Properties in Nano-scale Thin Film. Tribol Lett 67, 111 (2019). https://doi.org/10.1007/s11249-019-1222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1222-3

Keywords

Navigation