Skip to main content
Log in

Engine Oils in the Field: A Comprehensive Chemical Assessment of Engine Oil Degradation in a Passenger Car

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

For the understanding of oil degradation in a combustion engine, in particular zinc dialkyl dithiophosphate (ZDDP) deterioration and its impact on wear expressed as iron content, a field test with a passenger car was carried out, which covered a distance of 19,800 km and represented an entire oil change interval. Condition monitoring of the SAE 5W-30 engine oil used in the turbocharged petrol engine combined the use of conventional and advanced analytical methods. The conventional data collected from the used oils revealed the progress of additives (antioxidants, base reserve, ZDDP), oil degradation products (oxidation, nitration, sulfation, acids), and contaminations (water, soot, wear, fuel dilution). High-resolution mass spectrometry was included to identify ZDDP additive compounds and their fate during the field test as well as their correlation with wear formation. Dialkyl dithiophosphates as the main ZDDP compounds were rapidly degraded and no longer detected after 6000 km. Dialkyl thiophosphate as intermediate ZDDP degradation product was formed and largely depleted within the first 6000 km. Dialkyl phosphates, phosphoric acid, and sulfuric acid as organic and inorganic ZDDP degradation products were generated early and reached high levels at the end of the field test. The presence of intact ZDDP and its degradation products, notably phosphoric and sulfuric acid, correlated with the oil’s iron content. Wear largely remained at low level as long as intact ZDDP was available for tribofilm formation. The lack of ZDDP along with the formation of inorganic acids from ZDDP resulted in an increase in the wear rate by a factor of four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. European Automobile Manufacturers’ Association (ACEA): ACEA Report – Vehicles in use – Europe 2018. https://www.acea.be/uploads/statistic_documents/ACEA_Report_Vehicles_in_use-Europe_2018.pdf (2018). Accessed 25 March 2019

  2. International Organization of Motor Vehicle Manufacturers (OICA): World Vehicles in Use. http://www.oica.net/category/vehicles-in-use/. Accessed 25 March 2019

  3. International Organization of Motor Vehicle Manufacturers (OICA): 2018 Production Statistics. http://www.oica.net/category/production-statistics/2018-statistics/. Accessed 25 March 2019

  4. Irle, R.: Global EV Sales for 2018 – Final Results. http://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/. Accessed 25 March 2019

  5. European Commission: Emissions in the automotive sector. https://ec.europa.eu/growth/sectors/automotive/environment-protection/emissions_en. Accessed 25 March 2019

  6. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012)

    Article  Google Scholar 

  7. Xue, Q., Liu, W.: Tribochemistry and the development of AW and EP oil additives–a review. Lubr. Sci. 7, 81–92 (1994)

    Article  CAS  Google Scholar 

  8. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)

    Article  CAS  Google Scholar 

  9. Nicholls, M.A., Do, T., Norton, P.R., Kasrai, M., Bancroft, G.M.: Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 38, 15–39 (2005)

    Article  CAS  Google Scholar 

  10. Crobu, M., Rossi, A., Mangolini, F., Spencer, N.D.: Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Anal. Bioanal. Chem. 403, 1415–1432 (2012)

    Article  CAS  Google Scholar 

  11. De Barros Bouchet, M.I., Righi, M.C., Philippon, D., Mambingo-Doumbe, S., Le-Mogne, T., Martin, J.M., Boufet, A.: Tribochemistry of phosphorus additives: experiments and first-principles calculations. RSC Adv. 5, 49270–49279 (2015)

    Article  Google Scholar 

  12. Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)

    Article  CAS  Google Scholar 

  13. Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63(24), 1–15 (2016)

    Google Scholar 

  14. Ghanbarzadeh, A., Piras, E., Nedelcu, I., Brizmer, V., Wilson, M.C.T., Morina, A., Dowson, D., Neville, A.: Zinc dialkyl dithiophosphate antiwear tribofilm and its effect on the topography evolution of surfaces: a numerical and experimental study. Wear 362–363, 186–198 (2016)

    Article  Google Scholar 

  15. Soltanahmadi, S., Morina, A., Van Eijk, M.C.P., Nedelcu, I., Neville, A.: Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation. Appl. Surf. Sci. 414, 41–51 (2017)

    Article  CAS  Google Scholar 

  16. Guo, W., Zhou, Y., Sang, X., Leonard, D.N., Qu, J., Poplawsky, J.D.: Atom probe tomography unveils formation mechanisms of wear-protective tribofilms by ZDDP, ionic liquid, and their combination. ACS Appl. Mater. Inter. 9, 23152–23163 (2017)

    Article  CAS  Google Scholar 

  17. Dorgham, A., Neville, A., Ignatiyev, K., Mosselmans, F., Morina, A.: An in situ synchrotron XAS methodology for surface analysis under high temperature, pressure, and shear. Rev. Sci. Instrum. 88, 015101 (2017)

    Article  CAS  Google Scholar 

  18. Dorgham, A., Parsaeian, P., Neville, A., Ignatiyev, K., Mosselmans, F., Masuko, M., Morina, A.: In situ synchrotron XAS study of the decomposition kinetics of ZDDP triboreactive interfaces. RSC Adv. 8, 34168–34181 (2018)

    Article  CAS  Google Scholar 

  19. Dawczyk, J., Ware, E., Ardakani, M., Russo, J., Spikes, H.: Use of FIB to study ZDDP tribofilms. Tribol. Lett. 66(155), 1–8 (2018)

    CAS  Google Scholar 

  20. Spikes, H.: Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubr. Sci. 20, 103–136 (2008)

    Article  CAS  Google Scholar 

  21. Rastogi, R.B., Maurya, J.L., Jaiswal, V.: Low sulfur, phosphorus and metal free antiwear additives: synergistic action of salicylaldehyde N(4)-phenylthiosemicarbazones and its different derivatives with Vanlube 289 additive. Wear 297, 849–859 (2013)

    Article  CAS  Google Scholar 

  22. Qu, J., Luo, H., Chi, M., Ma, C., Blau, P.J., Dai, S., Viola, M.B.: Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive. Tribol. Int. 71, 88–97 (2014)

    Article  CAS  Google Scholar 

  23. Sharma, V., Doerr, N., Erdemir, A., Aswath, P.B.: Interaction of phosphonium ionic liquids with borate esters at tribological interfaces. RSC Adv. 6, 53148–53161 (2016). https://doi.org/10.1039/c6ra11822d

    Article  CAS  Google Scholar 

  24. Sharma, V., Dörr, N., Erdemir, A., Aswath, P.B.: Antiwear properties of binary ashless blend of phosphonium ionic liquids and borate esters in partially formulated oil (No Zn). Tribol. Lett. 67(42), 1–13 (2019)

    CAS  Google Scholar 

  25. Matta, C., De Barros Bouchet, M.I., Le-Mogne, T., Vachet, B., Martin, J.M.: Tribochemistry of tetrahedral hydrogen-free amorphous carbon coatings in the presence of OH-containing lubricants. Lubr. Sci. 20, 137–149 (2008)

    Article  CAS  Google Scholar 

  26. Martin, J.M., Grossiord, C., Varlot, K., Vacher, B., Igarashi, J.: Synergistic effects in binary systems of lubricant additives: a chemical hardness approach. Tribol. Lett. 8, 193–201 (2000)

    Article  CAS  Google Scholar 

  27. Topolovec Miklozic, K., Graham, J., Spikes, H.: Chemical and physical analysis of reaction films formed by molybdenum dialkyl-dithiocarbamate friction modifier additive using Raman and atomic force microscopy. Tribol. Lett. 11, 71–81 (2001)

    Article  Google Scholar 

  28. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance–tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)

    Article  CAS  Google Scholar 

  29. Spikes, H.: Friction modifier additives. Tribol. Lett. (2015). https://doi.org/10.1007/s11249-015-0589-z

    Article  Google Scholar 

  30. Rai, Y., Neville, A., Morina, A.: Transient processes of MoS2 tribofilm formation under boundary lubrication. Lubr. Sci. 28, 449–471 (2016)

    Article  CAS  Google Scholar 

  31. Gorbatchev, O., De Barros Bouchet, M.I., Martin, J.M., Léonard, D., Le-Mogne, T., Iovine, R., Thiebaut, B., Héau, C.: Friction reduction efficiency of organic Mo-containing FM additives associated to ZDDP for steel and carbon-based contacts. Tribol. Int. 99, 278–288 (2016)

    Article  CAS  Google Scholar 

  32. Schwarze, H., Brouwer, L., Knoll, G., Schlerege, F., Müller-Frank, U., Kopnarski, M., Emrich, S.: Ölalterung und Verschleiß im Ottomotor (engl.: oil ageing and wear in the petrol engine). Motortechnische Zeitschrift 69, 878–886 (2008)

    Article  Google Scholar 

  33. Repka, M., Dörr, N., Brenner, J., Gabler, C., McAleese, C., Ishigo, O., Koshima, M.: Lubricant-surface interactions of polymer coated engine bearings. Tribol. Int. 109, 519–528 (2017)

    Article  CAS  Google Scholar 

  34. Besser, C., Agocs, A., Ronai, B., Ristic, A., Repka, M., Jankes, E., McAleese, C., Dörr, N.: Generation of engine oils with defined degree of degradation by means of a large scale artificial alteration method. Tribol. Int. 132, 39–49 (2019)

    Article  Google Scholar 

  35. ASTM D 6335: Standard test method for determination of high temperature deposits by thermo-oxidation engine oil simulation test. ASTM International, West Conshohocken, PA (2018)

  36. Wolak, A.: Changes in lubricant properties of used synthetic oils based on the total acid number. Meas. Control 51, 65–72 (2018)

    Article  Google Scholar 

  37. Wolak, A.: TBN performance study on a test fleet in real-world driving conditions using present-day engine oils. Measurement 114, 322–331 (2018)

    Article  Google Scholar 

  38. Kumbár, V., Glos, J., Votava, J.: Monitoring of chemical elements during lifetime of engine oil. Acta Univ. Agric. Silvic. Mendel. Brun. 62, 155–159 (2014)

    Article  Google Scholar 

  39. Sikora, G., Miszczak, A.: The influence of oil ageing on the change of viscosity and lubricity of engine oil. Solid State Phenom. 199, 182–187 (2013)

    Article  Google Scholar 

  40. Kral, J., Konecny, B., Kral, J., Madac, K., Fedorko, G., Molnar, V.: Degradation and chemical change of longlife oils following intensive use in automobile engines. Measurement 50, 34–42 (2014)

    Article  Google Scholar 

  41. Kim, Y., Kim, N.Y., Park, S.Y., Lee, D., Lee, J.H.: Classification and individualization of used engine oils using elemental composition and discriminant analysis. Forensic Sci. Int. 230, 58–67 (2013)

    Article  CAS  Google Scholar 

  42. Ferguson, S., Johnson, J., Gonzales, D., Hobbs, C., Allen, C., Williams, S.: Analysis of ZDDP content and thermal decomposition in motor oils using NAA and NMR. Phys. Procedia 66, 439–444 (2015)

    Article  CAS  Google Scholar 

  43. Bassbasi, M., Hafid, A., Platikanov, S., Tauler, R., Oussama, A.: Study of motor oil adulteration by infrared spectroscopy and chemometrics methods. Fuel 104, 798–804 (2013)

    Article  CAS  Google Scholar 

  44. Abou El Naga, H.H., Salem, A.E.M.: Effect of worn metals on the oxidation of lubricating oils. Wear 96, 267–283 (1984)

    Article  CAS  Google Scholar 

  45. Ofunne, G.C., Maduako, A.U., Ojinnaka, C.M.: Studies on the ageing characteristics of automotive crankcase oils. Tribol. Int. 22, 401–404 (1989)

    Article  CAS  Google Scholar 

  46. Besser, C., Schneidhofer, C., Dörr, N., Novotny-Farkas, F., Allmaier, G.: Investigation of long-term engine oil performance using lab-based artificial ageing illustrated by the impact of ethanol as fuel component. Tribol. Int. 46, 174–182 (2012)

    Article  CAS  Google Scholar 

  47. Besser, C., Dörr, N., Novotny-Farkas, F., Varmuza, K., Allmaier, G.: Comparison of engine oil degradation observed in laboratory alteration and in the engine by chemometric data evaluation. Tribol. Int. 65, 37–47 (2013)

    Article  CAS  Google Scholar 

  48. Besser, C., Steinschütz, K., Dörr, N., Novotny-Farkas, F., Allmaier, G.: Impact of engine oil degradation on wear and corrosion caused by acetic acid evaluated by chassis dynamometer bench tests. Wear 317, 64–76 (2014)

    Article  CAS  Google Scholar 

  49. Sautermeister, F.A., Priest, M.: Physical and chemical impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines. Tribol. Lett. 47, 261–271 (2012)

    Article  CAS  Google Scholar 

  50. Sautermeister, F.A., Priest, M., Lee, P.M., Fox, M.F.: Impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines: contact angle, interfacial tension and chemical interaction. Tribol. Int. 59, 47–56 (2013)

    Article  CAS  Google Scholar 

  51. Sautermeister, F.A., Priest, M., Fox, M.F.: FTIR lubricant analysis: concentration of dispersed sulphuric acid. Ind. Lubr. Tribol. 66, 555–559 (2014)

    Article  Google Scholar 

  52. Vipper, A.B., Zadko, I.I., Ermolaev, M.V., Oleinik, J.Y.: Engine oil ageing under laboratory conditions. Lubr. Sci. 14, 363–375 (2002)

    Article  CAS  Google Scholar 

  53. Martin, J.M., Le Mogne, T., Bilas, P., Vacher, B., Yamada, Y.: Effect of oxidative degradation on mechanisms of friction reduction by MoDTC. Tribology Series 40, 207–213 (2002)

    Article  CAS  Google Scholar 

  54. De Feo, M., Minfray, C., De Barros Bouchet, M.I., Thiebaut, B., Le Mogne, T., Vacher, B., Martin, J.M.: Ageing impact on tribological properties of MoDTC-containing base oil. Tribol. Int. 92, 126–135 (2015)

    Article  Google Scholar 

  55. Cousseau, T., Ruiz Acero, J.S., Sinatora, A.: Tribological response of fresh and used engine oils: the effect of surface texturing, roughness and fuel type. Tribol. Int. 100, 60–69 (2016)

    Article  CAS  Google Scholar 

  56. Uy, D., Simko, S.J., Carter, R.O., Jensen, R.K., Gangopadhyay, A.K.: Characterization of anti-wear films formed from fresh and aged engine oils. Wear 263, 1165–1174 (2007)

    Article  CAS  Google Scholar 

  57. Cen, H., Morina, A., Neville, A., Pasaribu, R., Nedelcu, I.: Effect of water on ZDDP anti-wear performance and related tribochemistry in lubricated steel/steel pure sliding contacts. Tribol. Int. 56, 47–57 (2012)

    Article  CAS  Google Scholar 

  58. Heredia-Cancino, J.A., Ramezani, M., Álvarez-Ramos, M.E.: Effect of degradation on tribological performance of engine lubricants at elevated temperatures. Tribol. Int. 124, 230–237 (2018)

    Article  CAS  Google Scholar 

  59. Cen, H., Morina, A., Neville, A.: Effect of lubricant ageing on lubricant physical and chemical properties and tribological performance; Part I: effect of lubricant chemistry. Ind. Lubr. Tribol. 70, 385–392 (2018)

    Article  Google Scholar 

  60. Cen, H., Morina, A., Neville, A.: Effect of lubricant ageing on lubricant physical and chemical properties and tribological performance; Part II: effect of water contamination on lubricant. Ind. Lubr. Tribol. 71, 48–53 (2019)

    Article  Google Scholar 

  61. Sangvanich, P., Tungcharoen, J., Petsom, A.: Analysis of zinc dialkyldithiophosphate additives in commercial lubricating oil using matrix assisted laser desorption/ionization-time of flight mass spectrometry. Acta Chim. Slov. 55, 582–587 (2008)

    CAS  Google Scholar 

  62. Besser, C., Pisarova, L., Frauscher, M., Hunger, H., Litzow, U., Orfaniotis, A., Dörr, N.: Oxidation products of biodiesel in diesel fuel generated by artificial alteration and identified by mass spectrometry. Fuel 206, 524–533 (2017)

    Article  CAS  Google Scholar 

  63. ÖNORM EN 228: Kraftstoffe für Kraftfahrzeuge - Unverbleite Ottokraftstoffe - Anforderungen und Prüfverfahren (engl.: Automotive fuels - Unleaded petrol - Requirements and test methods). Austrian Standards, Vienna (2017)

  64. DIN 51558-1: Testing of mineral oils; determination of the neutralization number; colour-indicator titration. Deutsches Institut für Normung, Berlin (1979)

  65. DIN ISO 3771: Petroleum products - Determination of base number - Perchloric acid potentiometric titration method. International Organization for Standardization, Geneva (2011)

  66. ASTM D 7042: Standard test method for dynamic viscosity and density of liquids by Stabinger viscometer (and the calculation of kinematic viscosity). ASTM International, West Conshohocken, PA (2016)

  67. ASTM D2270: Standard practice for calculating viscosity index from kinematic viscosity at 40 °C and 100 °C. ASTM International, West Conshohocken, PA (2016)

  68. DIN 51777-2: Testing of mineral oil hydrocarbons and solvents; determination of water content according to Karl Fischer. Deutsches Institut für Normung, Berlin (1974)

  69. DIN 51452: Testing of lubricants; determination of the soot content in used diesel engine oils; infrared spectrometry. Deutsches Institut für Normung, Berlin (1994)

  70. ASTM E 2412: Standard practice for condition monitoring of in-service lubricants by trend analysis using Fourier transform infrared (FT-IR) spectrometry. ASTM International, West Conshohocken, PA (2018)

  71. Gatto, V.J., Moehle, W.E., Cobb, T.W., Schneller, E.R.: Oxidation fundamentals and its application to turbine oil testing. J. ASTM Int. 3, 1–20 (2006)

    Article  Google Scholar 

  72. Soleimani, M., Dehabadi, L., Wilson, L.D., Tabil, L.G.: Chapter 2 – Antioxidants Classification and Applications in Lubricants. In: Johnson, D. (ed.) Tribology, Lubricants and Additives, pp. 23–42. InTechOpen, London (2018)

    Google Scholar 

  73. Kassler, A., Pittenauer, E., Doerr, N., Allmaier, G.: Development of an accelerated artificial ageing method for the characterization of degradation products of antioxidants in lubricants by mass spectrometry. Eur. J. Mass Spectrom. (2018). https://doi.org/10.1177/1469066718811714

    Article  Google Scholar 

  74. Agiral, A., Zalatan, D., Sutor, P.: Understanding total base number measurement. STLE 73th Annual Meeting & Exhibition, May 20–24 2018, Minneapolis

  75. Jones, R.B., Coy, R.C.: The chemistry of the thermal degradation of zinc dialkyldithiophosphate additives. ASLE Trans. 24, 91–97 (1981)

    Article  CAS  Google Scholar 

  76. Lockwood, F., Zhang, Z., Choi, S., Yu, W.: Effect of soot loading on the thermal characteristics of diesel engine oils. SAE Technical Papers (2001). https://doi.org/10.4271/2001-01-1714

  77. Vyavhare, K., Bagi, S., Patel, M., Aswath, P.B.: Impact of diesel engine oil additives-soot interactions on physiochemical, oxidation and wear characteristics of soot. Energy Fuels (2019). https://doi.org/10.1021/acs.energyfuels.8b03841

    Article  Google Scholar 

  78. Uy, D., Ford, M.A., Jayne, D.T., O’Neill, A.E., Haack, L.P., Hangas, J., Jagner, M.J., Sammut, A., Gangopadhyay, A.K.: Characterization of gasoline soot and comparison to diesel soot: morphology, chemistry, and wear. Tribol. Int. 80, 198–209 (2014)

    Article  CAS  Google Scholar 

  79. La Rocca, A., Bonatesta, F., Fay, M.W., Campanella, F.: Characterisation of soot in oil from a gasoline direct injection engine using transmission electron microscopy. Tribol. Int. 86, 77–84 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the “Austrian COMET-Program” (project XTribology, no. 849109) via the Austrian Research Promotion Agency (FFG) and the Provinces of Niederösterreich, Vorarlberg, and Wien, and has been carried out within the “Excellence Centre of Tribology” (AC2T research GmbH). The authors would like to thank all researchers of AC2T research GmbH who were involved in the study: Lucia Pisarova for contributing to MS evaluation and in particular Thomas Wopelka for providing the vehicle and driving thousands of kilometers reliably and safely in the name of science, among others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Dörr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörr, N., Agocs, A., Besser, C. et al. Engine Oils in the Field: A Comprehensive Chemical Assessment of Engine Oil Degradation in a Passenger Car. Tribol Lett 67, 68 (2019). https://doi.org/10.1007/s11249-019-1182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1182-7

Keywords

Navigation