Skip to main content
Log in

A Mechanochemical Route to Cutting Highly Strain-Hardening Metals

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Highly strain-hardening metals such as Al, Ni, and stainless steels, although relatively soft, are well known as being difficult to cut, because of an unsteady and highly redundant mode of plastic deformation—sinuous flow—prevailing during chip formation. This difficulty in cutting is greatly ameliorated, if the workpiece surface ahead of the chip formation region is coated with certain chemical media such as glues, inks, and alcohols that are quite benign. High-speed imaging shows that the media effect a change in the local plastic deformation mode, from sinuous flow to one characterized by periodic fracture—segmented flow. This flow transition, due to a mechanochemical effect, results in significant reduction of deformation forces and energy, often > 50%, thus facilitating the cutting. The effect is mostly pronounced at smaller undeformed chip thickness, typical of finish and semi-finish machining regimes. The quality of the cut surface, as measured by defect density and surface roughness, improves by an order of magnitude, when the media are applied. Furthermore, this surface is relatively strain free in contrast to conventionally machined surfaces. The mechanochemical effect, with a strong coupling to the flow mode, is controllable, with the media showing similar efficacy across different metal systems. The results suggest opportunities for improving performance of machining processes for many difficult-to-cut gummy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barlow, P.L.: Rehbinder effect in lubricated metal cutting. Nature 211(5053), 1076–1077 (1966)

    Article  CAS  Google Scholar 

  2. Bilby, B., Cottrell, A., Smith, E., Swinden, K.: Plastic yielding from sharp notches. Proc. R. Soc. A 279(1376), 1–9 (1964)

    Google Scholar 

  3. Cassin, C., Boothroyd, G.: Lubricating action of cutting fluids. J. Mech. Eng. Sci. 7(1), 67–81 (1965)

    Article  Google Scholar 

  4. Fernandes, P., Jones, D.: Specificity in liquid metal induced embrittlement. Eng. Fail. Anal. 3(4), 299–302 (1996)

    Article  CAS  Google Scholar 

  5. Kohn, E.M.: Role of extreme pressure lubricants in boundary lubrication and in metal cutting. Nature 197, 895 (1963)

    Article  CAS  Google Scholar 

  6. Latanision, R.M.: Surface effects in crystal plasticity: general overview. In: Latanision, R.M., Fourie, J.T. (eds.) Surface Effects in Crystal Plasticity, pp. 3–48. Nordhoff, Leyden (1977)

    Chapter  Google Scholar 

  7. Mahato, A., Sundaram, N.K., Yeung, H., Lukitsch, M., Sachdev, A.K., Chandrasekar, S.: Quantitative in situ analysis of deformation in sliding metals: effect of initial strain state. Tribol. Lett. 60(3), 36 (2015)

    Article  Google Scholar 

  8. Montgomery, R.: The effect of alcohols and ethers on the wear behavior of aluminum. Wear 8(6), 466–473 (1965)

    Article  CAS  Google Scholar 

  9. Nakayama, K.: The formation of saw-toothed chip in metal cutting. In: Proceedings of International Conference on Production Engineering, pp 572–577 (1974)

  10. Rehbinder, P.: New physico-chemical phenomena in the deformation and mechanical treatment of solids. Nature 159, 866–867 (1947)

    Article  Google Scholar 

  11. Rehbinder, P.A., Shchukin, E.D.: Surface phenomena in solids during deformation and fracture processes. Prog. Surf. Sci. 3, 97–188 (1972)

    Article  Google Scholar 

  12. Reynolds O.: Chem News 29, 117-118 (1874); mem. Proceedings of the Literary and Philosophical Society of Manchester 13:93 (1874)

  13. Rice, J.R.: Mechanics of brittle cracking of crystal lattices and interfaces. In: Latanision, R.M., Jones, R.H. (eds.) Chem. Phys. Fract., pp. 23–44. Nijhoff, Martinus, Amsterdam (1987)

    Chapter  Google Scholar 

  14. Rice, J.R., Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29(1), 73–97 (1974)

    Article  CAS  Google Scholar 

  15. Robertson, W.D.: Stress Corrosion Cracking and Embrittlement. Wiley, New York (1956)

    Google Scholar 

  16. Rostoker, W., McCaughey, J., Markus, H.: Embrittlement by Liquid Metals. Reinhold Pub. Corp., New York (1960)

    Google Scholar 

  17. Schneider, G.: Machinability of metals. American Machinist (2009)

  18. Shaw, M.C.: Metal Cutting Principles. Oxford University Press, Oxford (2005)

    Google Scholar 

  19. Shchukin, E.D.: The influence of surface-active media on the mechanical properties of materials. Adv. Colloid Interface Sci. 123, 33–47 (2006)

    Article  Google Scholar 

  20. Song, J., Curtin, W.: Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12(2), 145 (2013)

    Article  CAS  Google Scholar 

  21. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)

    Article  CAS  Google Scholar 

  22. Sundaram, N.K., Guo, Y., Chandrasekar, S.: Mesoscale folding, instability, and disruption of laminar flow in metal surfaces. Phys. Rev. Lett. 109(10), 106,001 (2012)

    Article  Google Scholar 

  23. Sundaram, N.K., Mahato, A., Guo, Y., Viswanathan, K., Chandrasekar, S.: Folding in metal polycrystals: microstructural origins and mechanics. Acta Mater. 140, 67–78 (2017)

    Article  CAS  Google Scholar 

  24. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  25. Udupa, A., Viswanathan, K., Ho, Y., Chandrasekar, S.: The cutting of metals via plastic buckling. Proc. R. Soc. A 473(2202), 20160863 (2017)

    Article  Google Scholar 

  26. Udupa, A., Viswanathan, K., Saei, M., Mann, J.B., Chandrasekar, S.: Material-independent mechanochemical effect in the deformation of highly-strain-hardening metals. Phys. Rev. Appl. 10(1), 014,009 (2018)

    Article  CAS  Google Scholar 

  27. Usui, E., Gujral, A., Shaw, M.C.: An experimental study of the action of \(\text{ CCl }_4\) in cutting and other processes involving plastic flow. Int. J. Mach. Tool Des. Res. 1(3), 187–197 (1961)

    Article  Google Scholar 

  28. Vandana, A., Sundaram, N.K.: Simulation of sinuous flow in metal cutting. Tribol. Lett. 66(3), 94 (2018)

    Article  Google Scholar 

  29. Viswanathan, K., Mahato, A., Yeung, H., Chandrasekar, S.: Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting. Surf. Topogr. Metrol. Prop. 5(1), 014,002 (2017a)

    Article  Google Scholar 

  30. Viswanathan, K., Udupa, A., Yeung, H., Sagapuram, D., Mann, J.B., Saei, M., Chandrasekar, S.: On the stability of plastic flow in cutting of metals. CIRP Ann. Manuf. Technol. 66(1), 69–72 (2017b)

    Article  Google Scholar 

  31. Westwood, A., Kamdar, M.: Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury. Philos. Mag. 8(89), 787–804 (1963)

    Article  CAS  Google Scholar 

  32. Williams, J.E., Smart, E.F., Milner, D.R.: Metallurgy of machining. Part 1: basic considerations and the cutting of pure metals. Metallurgia 81(483), 3–10 (1970)

    Google Scholar 

  33. Woon, K., Rahman, M., Fang, F., Neo, K., Liu, K.: Investigations of tool edge radius effect in micromachining: a fem simulation approach. J. Mater. Process. Technol. 195(1–3), 204–211 (2008)

    Article  CAS  Google Scholar 

  34. Yeung, H., Viswanathan, K., Compton, W.D., Chandrasekar, S.: Sinuous flow in metals. Proc. Natl. Acad. Sci. USA 112(32), 9828–9832 (2015)

    Article  CAS  Google Scholar 

  35. Yeung, H., Viswanathan, K., Udupa, A., Mahato, A., Chandrasekar, S.: Sinuous flow in cutting of metals. Phys. Rev. Appl. 8(5), 054,044 (2017)

    Article  Google Scholar 

  36. Zum Gahr, K.H.: Microstructure and Wear of Materials. Elsevier, New York (1987)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from NSF Grants CMMI 1562470 and DMR 1610094. JMD would like to acknowledge support from the DoD, Naval Surface Warfare Center, Crane Division, under the NISE Program and the DoD SMART Scholarship-for-Service Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Udupa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udupa, A., Viswanathan, K., Davis, J.M. et al. A Mechanochemical Route to Cutting Highly Strain-Hardening Metals. Tribol Lett 67, 4 (2019). https://doi.org/10.1007/s11249-018-1117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1117-8

Keywords

Navigation