Skip to main content
Log in

Considerations for Biotribometers: Cells, Gels, and Tissues

  • Methods
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tribological evaluation of biological materials, such as cells and tissues, present both opportunities and challenges to experimentalists. When working with living materials, maintaining homeostasis during testing in vitro or in vivo often requires appropriate control of the environment, selection of the testing time and duration, applied loads, and shear stresses. This manuscript provides much of the background and design information used in the development of a microtribometer that has been modified to perform biotribology measurements in vitro. The focus of this manuscript is on mammalian cells in monolayer, and a series of order-of-magnitude calculations are used to inform future instrument designs and considerations, including: sliding speed ranges from 10 nm/s to 100 mm/s, contact pressures less than 6 kPa, temperature ~ 37 °C, and contact areas on the order of 1,000’s of µm2. The design and development of these biotribology instruments enable in situ fluorescence microscopy and allow for statistically significant gene expression analyses such as quantitative reverse-transcription polymerase chain-reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reeve, L., Baldrick, P.: Biocompatibility assessments for medical devices – evolving regulatory considerations. Exp. Rev. Med. Devices. 14, 161–167 (2017). https://doi.org/10.1080/17434440.2017.1280392

    Article  CAS  Google Scholar 

  2. Center for Devices and Radiological Health U.S. Food and Drug Administration. Anaplastic Large Cell Lymphoma (ALCL) In Women with Breast Implants: Preliminary FDA Findings and Analyses, http://wayback.archive-it.org/7993/20171115053750/https:/www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/BreastImplants/ucm239996.htm. Accessed Nov 9 2017

  3. U.S. Food and Drug Administration. Medical Device Reports of Breast Implant-Associated Anaplastic Large Cell Lymphoma, https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/BreastImplants/ucm481899.htm. Accessed April 15 2018

  4. Nichols, J.J., Willcox, M.D.P., Bron, A.J., Belmonte, C., Ciolino, J.B., Craig, J.P., Dogru, M., Foulks, G.N., Jones, L., Nelson, J.D., Nichols, K.K., Purslow, C., Schaumberg, D.A., Stapleton, F., Sullivan, D.A.: The TFOS international workshop on contact lens discomfort: executive summary. Investig. Ophthalmol. Vis. Sci. 54, 7–13: (2013). https://doi.org/10.1167/iovs.13-13212

    Article  Google Scholar 

  5. Efron, N.: Contact lens wear is intrinsically inflammatory. Clin. Exp. Optom. 100, 3–19 (2017). https://doi.org/10.1111/cxo.12487

    Article  Google Scholar 

  6. Efron, N.: Rethinking contact lens discomfort. Clin. Exp. Optom. 101, 1–3 (2018). https://doi.org/10.1111/cxo.12629

    Article  Google Scholar 

  7. Qin, G., Baidouri, H., Glasser, A., Raghunathan, V., Morris, C., Maltseva, I., McDermott, A.M.: Development of an in vitro model to study the biological effects of blinking. Ocul. Surf. (2018). https://doi.org/10.1016/j.jtos.2017.12.002

    Article  Google Scholar 

  8. Pitenis, A.A., Urueña, J.M., Hart, S.M., O’Bryan, C.S., Marshall, S.L., Levings, P.P., Angelini, T.E., Sawyer, W.G.: Friction-induced inflammation. Tribol. Lett. 66, 81 (2018). https://doi.org/10.1007/s11249-018-1029-7

    Article  Google Scholar 

  9. Cobb, J.A., Dunn, A.C., Kwon, J., Sarntinoranont, M., Sawyer, W.G., Tran-Son-Tay, R.: A novel method for low load friction testing on living cells. Biotechnol. Lett. 30, 801–806 (2008). https://doi.org/10.1007/s10529-007-9623-z

    Article  CAS  Google Scholar 

  10. Dunn, A.C., Zaveri, T.D., Keselowsky, B.G., Sawyer, W.G.: Macroscopic friction coefficient measurements on living endothelial cells. Tribol. Lett. 27, 233–238 (2007). https://doi.org/10.1007/s11249-007-9230-0

    Article  CAS  Google Scholar 

  11. Dunn, A.C., Cobb, J.A., Kantzios, A.N., Lee, S.J., Sarntinoranont, M., Tran-Son-Tay, R., Sawyer, W.G.: Friction coefficient measurement of hydrogel materials on living epithelial cells. Tribol. Lett. 30, 13–19 (2008). https://doi.org/10.1007/s11249-008-9306-5

    Article  Google Scholar 

  12. Straehla, J.P., Limpoco, F.T., Dolgova, N.V., Keselowsky, B.G., Sawyer, W.G., Perry, S.S.: Nanomechanical probes of single corneal epithelial cells: Shear stress and elastic modulus. Tribol. Lett. 38, 107–113 (2010). https://doi.org/10.1007/s11249-010-9579-3

    Article  Google Scholar 

  13. Sterner, O., Aeschlimann, R., Zürcher, S., Scales, C., Riederer, D., Spencer, N.D., Tosatti, S.G.P.: Tribological classification of contact lenses: from coefficient of friction to sliding work. Tribol. Lett. 63, 9 (2016). https://doi.org/10.1007/s11249-016-0696-5

    Article  CAS  Google Scholar 

  14. Pitenis, A.A., Urueña, J.M., Hormel, T.T., Bhattacharjee, T., Niemi, S.R., Marshall, S.L., Hart, S.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.G.: Corneal cell friction: survival, lubricity, tear films, and mucin production over extended duration in vitro studies. Biotribology. 11, 77–83 (2017). https://doi.org/10.1016/j.biotri.2017.04.003

    Article  Google Scholar 

  15. Pitenis, A.A., Urueña, J.M., McGhee, E.O., Hart, S.M., Reale, E.R., Kim, J., Schulze, K.D., Marshall, S.L., Bennett, A.I., Niemi, S.R., Angelini, T.E., Sawyer, W.G., Dunn, A.C.: Challenges and opportunities in soft tribology. Tribol. Mater. Surfaces Interfaces. 11, 180–186 (2017). https://doi.org/10.1080/17515831.2017.1400779

    Article  Google Scholar 

  16. Zehnder, S.M., Wiatt, M.K., Uruena, J.M., Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Multicellular density fluctuations in epithelial monolayers. Phys. Rev. E. 92, 032729 (2015). https://doi.org/10.1103/PhysRevE.92.032729

    Article  CAS  Google Scholar 

  17. Schulze, K.D., Zehnder, S.M., Urueña, J.M., Bhattacharjee, T., Sawyer, W.G., Angelini, T.E.: Elastic modulus and hydraulic permeability of MDCK monolayers. J. Biomech. 53, 210–213 (2017). https://doi.org/10.1016/j.jbiomech.2017.01.016

    Article  CAS  Google Scholar 

  18. Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18, 499–504 (2005). https://doi.org/10.1007/s11249-005-3610-0

    Article  CAS  Google Scholar 

  19. Krick, B.A., Vail, J.R., Persson, B.N.J., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185–194 (2012). https://doi.org/10.1007/s11249-011-9870-y

    Article  Google Scholar 

  20. Urueña, J.M., Pitenis, A.A., Harris, K.L., Sawyer, W.G.: Evolution and wear of fluoropolymer transfer films. Tribol. Lett. 57, 9 (2015). https://doi.org/10.1007/s11249-014-0453-6

    Article  CAS  Google Scholar 

  21. Pitenis, A.A., Urueña, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E., Sawyer, G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter. 10, 8955–8962 (2014). https://doi.org/10.1039/C4SM01728E

    Article  CAS  Google Scholar 

  22. Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Mesh Size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  23. Pitenis, A.A., Manuel Urueña, J., Cooper, A.C., Angelini, T.E., Sawyer, W.G.: Superlubricity in gemini hydrogels. J. Tribol. 138, 042103 (2016). https://doi.org/10.1115/1.4032890

    Article  CAS  Google Scholar 

  24. Schmitz, T.L., Action, J.E., Ziegert, J.C., Sawyer, W.G.: The difficulty of measuring low friction: Uncertainty analysis for friction coefficient measurements. J. Tribol. 127, 673 (2005). https://doi.org/10.1115/1.1843853

    Article  Google Scholar 

  25. Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009). https://doi.org/10.1007/s11249-009-9438-2

    Article  Google Scholar 

  26. Schulze, K.D., Hart, S.M., Marshall, S.L., O’Bryan, C.S., Urueña, J.M., Pitenis, A.A., Sawyer, W.G., Angelini, T.E.: Polymer osmotic pressure in hydrogel contact mechanics. Biotribology. 11, 3–7 (2017). https://doi.org/10.1016/j.biotri.2017.03.004

    Article  Google Scholar 

  27. Urueña, J.M., McGhee, E.O., Angelini, T.E., Dowson, D., Sawyer, W.G., Pitenis, A.A.: Normal load scaling of friction in gemini hydrogels. Biotribology. 13, 30–35 (2018). https://doi.org/10.1016/j.biotri.2018.01.002

    Article  Google Scholar 

  28. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  29. Garcia, M., Schulze, K.D., O’Bryan, C.S., Bhattacharjee, T., Sawyer, W.G., Angelini, T.E.: Eliminating the surface location from soft matter contact mechanics measurements. Tribol. Mater. Surfaces Interfaces. 11, 187–192 (2017). https://doi.org/10.1080/17515831.2017.1397908

    Article  Google Scholar 

  30. Marshall, S.L., Schulze, K.D., Hart, S.M., Urueña, J.M., McGhee, E.O., Bennett, A.I., Pitenis, A.A., O’Bryan, C.S., Angelini, T.E., Sawyer, W.G.: Spherically capped membrane probes for low contact pressure tribology. Biotribology. 11, 69–72 (2017). https://doi.org/10.1016/j.biotri.2017.03.008

    Article  Google Scholar 

  31. Bhattacharjee, T., Zehnder, S.M., Rowe, K.G., Jain, S., Nixon, R.M., Sawyer, W.G., Angelini, T.E.: Writing in the granular gel medium. Sci. Adv. 1, e1500655–e1500655 (2015). https://doi.org/10.1126/sciadv.1500655

    Article  Google Scholar 

  32. Bhattacharjee, T., Gil, C.J., Marshall, S.L., Urueña, J.M., O’Bryan, C.S., Carstens, M., Keselowsky, B., Palmer, G.D., Ghivizzani, S., Gibbs, C.P., Sawyer, W.G., Angelini, T.E.: Liquid-like solids support Cells in 3D. ACS biomater. Sci. Eng. 2, 1787–1795 (2016). https://doi.org/10.1021/acsbiomaterials.6b00218

    Article  CAS  Google Scholar 

  33. O’Bryan, C.S., Bhattacharjee, T., Hart, S., Kabb, C.P., Schulze, K.D., Chilakala, I., Sumerlin, B.S., Sawyer, W.G., Angelini, T.E.: Self-assembled micro-organogels for 3D printing silicone structures. Sci. Adv. 3, e1602800 (2017). https://doi.org/10.1126/sciadv.1602800

    Article  CAS  Google Scholar 

  34. O’Bryan, C.S., Bhattacharjee, T., Niemi, S.R., Balachandar, S., Baldwin, N., Ellison, S.T., Taylor, C.R., Sawyer, W.G., Angelini, T.E.: Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull. 42, 571–577 (2017). https://doi.org/10.1557/mrs.2017.167

    Article  CAS  Google Scholar 

  35. Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell. 77, 773–784 (1994). https://doi.org/10.1016/0092-8674(94)90060-4

    Article  CAS  Google Scholar 

  36. Dunn, A.C., Tichy, J.A., Uruenã, J.M., Sawyer, W.G.G., Urueña, J.M., Sawyer, W.G.G.: Lubrication regimes in contact lens wear during a blink. Tribol. Int. 63, 45–50 (2013). https://doi.org/10.1016/j.triboint.2013.01.008

    Article  Google Scholar 

  37. Dowson, D.: Paper 12: Modes of Lubrication in Human Joints. Proc. Inst. Mech. Eng. Conf. Proc. 181, 45–54: (1966). https://doi.org/10.1243/PIME_CONF_1966_181_206_02

    Article  Google Scholar 

  38. Hamrock, B.J., Dowson, D.: Elastohydrodynamic Lubrication of elliptical contacts for materials of low elastic modulus I—fully flooded conjunction. J. Lubr. Technol. 100, 236 (1978). https://doi.org/10.1115/1.3453152

    Article  Google Scholar 

  39. Kapitza, P.L.: Hydrodynamic theory of lubrication during rolling. Zh. Tekh. Fiz. 25, 747–762 (1955)

    Google Scholar 

  40. Dunn, A.C., Urueña, J.M., Huo, Y., Perry, S.S., Angelini, T.E., Sawyer, W.G.: Lubricity of surface hydrogel layers. Tribol. Lett. 49, 371–378 (2013). https://doi.org/10.1007/s11249-012-0076-8

    Article  CAS  Google Scholar 

  41. Schulze, K.D., Bennett, A.I., Marshall, S., Rowe, K.G., Dunn, A.C.: Real area of contact in a soft transparent interface by particle exclusion microscopy. J. Tribol. 138, 041404 (2016). https://doi.org/10.1115/1.4032822

    Article  CAS  Google Scholar 

  42. McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, W.G.: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2018). https://doi.org/10.1016/j.biotri.2017.12.002

    Article  Google Scholar 

  43. Lichtman, J.W., Conchello, J.-A.: Fluorescence microscopy. Nat. Methods. 2, 910–919 (2005). https://doi.org/10.1038/nmeth817

    Article  CAS  Google Scholar 

  44. Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nat. Methods. 2, 905–909 (2005). https://doi.org/10.1038/nmeth819

    Article  CAS  Google Scholar 

  45. Berridge, M.J., Bootman, M.D., Roderick, H.L.: Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003). https://doi.org/10.1038/nrm1155

    Article  CAS  Google Scholar 

  46. de Oliveira, C.M.B., Sakata, R.K., Issy, A.M., Gerola, L.R., Salomão, R.: Cytokines and Pain. Rev. Bras. Anestesiol. 61, 255–265 (2011). https://doi.org/10.1016/S0034-7094(11)70029-0

    Article  Google Scholar 

  47. Zhang, J.-M., An, J.: Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 45, 27–37 (2007). https://doi.org/10.1097/AIA.0b013e318034194e

    Article  CAS  Google Scholar 

  48. Milo, R., Phillips, R.: Cell biology by the numbers. Garland Science, Taylor & Francis Group, New York (2016)

    Google Scholar 

  49. Ramsköld, D., Luo, S., Wang, Y.-C., Li, R., Deng, Q., Faridani, O.R., Daniels, G.A., Khrebtukova, I., Loring, J.F., Laurent, L.C., Schroth, G.P., Sandberg, R.: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012). https://doi.org/10.1038/nbt.2282

    Article  CAS  Google Scholar 

  50. Shapiro, E., Biezuner, T., Linnarsson, S.: Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013). https://doi.org/10.1038/nrg3542

    Article  CAS  Google Scholar 

  51. Milo, R.: What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays. 35, 1050–1055 (2013). https://doi.org/10.1002/bies.201300066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Alcon Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela A. Pitenis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urueña, J.M., Hart, S.M., Hood, D.L. et al. Considerations for Biotribometers: Cells, Gels, and Tissues. Tribol Lett 66, 141 (2018). https://doi.org/10.1007/s11249-018-1094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1094-y

Keywords

Navigation