Skip to main content
Log in

Nickel/Multi-walled Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Efficient Lubricant Additive for Mineral Oil

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The nanocomposite of multi-walled carbon nanotube (MWCNT) decorated by nickel nanoparticles (Ni-NPs) was synthesized through a facile chemical reduction in supercritical carbon dioxide (SCCO2) fluid. The spherical nickel nanoparticles were highly dispersed on external wall surfaces of MWCNT with a narrow particle size distribution and had a face-centered cubic crystal structure and an average diameter about 5 nm. Tribological performances of the as-prepared nanocomposite as oil additive were investigated by using a ball-on-disk tribometer. It was found that when the nanocomposite was dispersed into pure mineral oil with an optimum mass concentration of about 0.20 wt%, the friction coefficient and wear rate were reduced by 44.2% and 56.4%, respectively. The mineral oil with the nanocomposite showed better tribological performances than the mineral oil with MWCNT or Ni-NPs alone, which confirmed the synergistic friction-reducing and anti-wear effect of the nanocomposite. Morphologies and chemical compositions of wear surfaces were examined by scanning electron microscopy (SEM), Taylor profilometer and X-ray photoelectron spectroscopy (XPS). Good friction and wear performances of the nanocomposite can be explained by physical deposition films formed on the wear surface and the synergistic effect between the anchored Ni-NPs and MWCNT of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)

    Article  CAS  Google Scholar 

  2. Bartz, W.: Lubricants and the environment. Tribol. Int. 31(1–3), 35–47 (1998)

    Article  CAS  Google Scholar 

  3. Kumar, A., Thakre, G.D., Arya, P.K., Jain, A.K.: Influence of operating parameters on the tribological performance of oleic acid-functionalized Cu nanofluids. Ind. Eng. Chem. Res. 56, 3527–3541 (2017)

    Article  CAS  Google Scholar 

  4. Xiong, X., Kang, Y., Yang, G., Zhang, S., Yu, L., Zhang, P.: Preparation and evaluation of tribological properties of Cu nanoparticles surface modified by tetradecyl hydroxamic acid. Tribol. Lett. 46, 211–220 (2012)

    Article  CAS  Google Scholar 

  5. Chen, Y., Zhang, Y., Zhang, S., Yu, L., Zhang, P., Zhang, Z.: Preparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological properties. Tribol. Lett. 51, 73–83 (2013)

    Article  CAS  Google Scholar 

  6. Chou, R., Battez, A.H., Cabello, J.J., Viesca, J.L., Osorio, A., Sagastume, A.: Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol. Int. 43, 2327–2332 (2010)

    Article  CAS  Google Scholar 

  7. Qiu, S., Zhou, Z., Dong, J., Chen, G.: Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J. Tribol. 123, 441–443 (2001)

    Article  CAS  Google Scholar 

  8. Zhang, S., Hu, L., Feng, D., Wang, H.: Anti-wear and friction-reduction mechanism of Sn and Fe nanoparticles as additives of multialkylated cyclopentanes under vacuum condition. Vacuum 87, 75–80 (2013)

    Article  CAS  Google Scholar 

  9. Padgurskas, J., Rukuiza, R., Prosyčevas, I., Kreivaitis, R.: Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol. Int. 60, 224–232 (2013)

    Article  CAS  Google Scholar 

  10. Guevremont, J.M., Guinther, G.H., Szemenyei, D., Devlin, M.T., Jao, T., Jaye, C., Woicik, J., Fischer, D.A.: Enhancement of engine oil wear and friction control performance through titanium additive chemistry. Tribol. Trans. 51(3), 324–331 (2008)

    Article  CAS  Google Scholar 

  11. Ma, J., Mo, Y., Bai, M.: Effect of Ag nanoparticles additive on the tribological behavior of multialkylated cyclopentanes (MACs). Wear 266, 627–631 (2009)

    Article  CAS  Google Scholar 

  12. Ghaednia, H., Babaei, H., Jackson, R.L., Bozack, M.J., Khodadadi, J.: The effect of nanoparticles on thin film elasto-hydrodynamic lubrication. Appl. Phys. Lett. 103, 263111 (2013)

    Article  Google Scholar 

  13. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)

    Article  CAS  Google Scholar 

  14. Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interfaces 3, 4221–4227 (2011)

    Article  CAS  Google Scholar 

  15. Khare, V., Pham, M.Q., Kumari, N., Yoon, H.S., Kim, C.S., Park, J.I., Ahn, S.H.: Graphene-ionic liquid based hybrid nanomaterials as novel lubricant for low friction and wear. ACS Appl. Mater. Interfaces 5, 4063–4075 (2013)

    Article  CAS  Google Scholar 

  16. Zhang, L., He, Y., Zhu, L., Yang, C., Niu, Q., An, C.: In situ alkylated graphene as oil dispersible additive for friction and wear reduction. Ind. Eng. Chem. Res. 56(32), 9029–9034 (2017)

    Article  CAS  Google Scholar 

  17. Liu, L., Fang, Z., Gu, A., Guo, Z.: Lubrication effect of the paraffin oil filled with functionalized multiwalled carbon nanotubes for bismaleimide resin. Tribol. Lett. 42, 59–65 (2011)

    Article  CAS  Google Scholar 

  18. Peng, Y., Ni, Z.: Tribological properties of stearic acid modified multi-walled carbon nanotubes in water. J. Tribol. 135(1), 012001 (2012)

    Article  Google Scholar 

  19. Cornelio, J.: Tribological properties of carbon nanotubes as lubricant additive in oil and water for a wheel-rail system. J. Mater. Res. Technol. 5, 68–76 (2016)

    Article  CAS  Google Scholar 

  20. Yu, B., Liu, Z., Ma, C., Sun, J., Liu, W., Zhou, F.: Ionic liquid modified multi-walled carbon nanotubes as lubricant additive. Tribol. Int. 81, 38–42 (2015)

    Article  CAS  Google Scholar 

  21. Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43(8), 1660–1666 (2005)

    Article  CAS  Google Scholar 

  22. Mohamed, A., Osman, T.A., Khattab, A., Zaki, M.: Tribological behavior of carbon nanotubes as an additive on lithium grease. J. Tribol. 137(1), 011801 (2014)

    Article  Google Scholar 

  23. Shi, Y., Liu, Z., Zhao, B., Sun, Y., Xu, F., Zhang, Y., Wen, Z., Yang, H., Li, Z.: Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction. J. Electroanal. Chem. 656, 29–33 (2011)

    Article  CAS  Google Scholar 

  24. Mallakpour, S., Khadem, E.: Carbon nanotube-metal oxide nanocomposites: fabrication, properties and applications. Chem. Eng. J. 302, 344–367 (2016)

    Article  CAS  Google Scholar 

  25. Chinnappan, A., Bandal, H., Kim, H., Ramakrishna, S.: Mn nanoparticles decorated on the ionic liquid functionalized multiwalled carbon nanotubes as a supercapacitor electrode material. Chem. Eng. J. 316, 928–935 (2017)

    Article  CAS  Google Scholar 

  26. Meng, Y., Su, F., Chen, Y.: Effective lubricant additive of nano-Ag/MWCNTs nanocomposite produced by supercritical CO2 synthesis. Tribol. Int. 118, 180–188 (2018)

    Article  CAS  Google Scholar 

  27. Lin, Y., Watson, K.A., Fallbach, M.J., Ghose, S., Smith, J.J.G., Delozier, D.M., Cao, W., Crooks, R.E., Connell, J.W.: Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3(4), 871–884 (2009)

    Article  CAS  Google Scholar 

  28. Xue, B., Chen, P., Hong, Q., Lin, J.Y., Tan, K.L.: Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem. 11, 2378–2381 (2011)

    Article  Google Scholar 

  29. An, G., Ma, W., Sun, Z., Liu, Z., Han, B., Miao, S., Miao, Z., Ding, K.: Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45(9), 1795–1801 (2007)

    Article  CAS  Google Scholar 

  30. Ye, X.R., Lin, Y., Wang, C., Engelhard, M.H., Wang, Y., Wai, C.M.: Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem. 14, 908–913 (2004)

    Article  CAS  Google Scholar 

  31. Zhao, D., Han, E., Wu, X., Guan, H.: Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water. Mater. Lett. 60, 3544–3547 (2006)

    Article  CAS  Google Scholar 

  32. Liu, Z., Han, B.: Synthesis of carbon-nanotube composites using supercritical fluids and their potential applications. Adv. Mater. 21, 825–829 (2009)

    Article  CAS  Google Scholar 

  33. Hiramatsu, M., Hori, M.: Preparation of dispersed platinum nanoparticles on a carbon nanostructured surface using supercritical fluid chemical deposition. Materials 3, 1559–1572 (2010)

    Article  CAS  Google Scholar 

  34. Zhao, J., Xue, H., Zhang, L., Yu, J., Hu, H.: Decoration of ultrafine platinum-ruthenium particles on functionalized graphene sheets in supercritical fluid and their electrocatalytic property. J. Nanopart. Res. 14, 935–945 (2012)

    Article  Google Scholar 

  35. Chen, C.Y., Lin, K.Y., Tsai, W.T., Chang, J.K., Tseng, C.M.: Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite. Int. J. Hydrogen Energy 35, 5490–5497 (2010)

    Article  CAS  Google Scholar 

  36. Monshi, A., Foroughi, M.R., Monshi, M.R.: Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of the National Natural Science Foundation of China (Nos. 21473061 and 51575191), the Guangdong Natural Science Funds for Distinguished Young Scholar (grant: 2015A030306026), and the Science and Technology Planning Project of Guangdong Province (grant: 2016A010102009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghua Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Su, F. & Chen, Y. Nickel/Multi-walled Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Efficient Lubricant Additive for Mineral Oil. Tribol Lett 66, 134 (2018). https://doi.org/10.1007/s11249-018-1088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1088-9

Keywords

Navigation