Skip to main content

Advertisement

Log in

High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The demand for increased energy efficiency continuously drives the development of new lubricants. Here we report the design and synthesis of hexahydrotriazine, triazine, and cyclen derivatives as friction modifiers (FMs) for enhanced fuel economy. This series of sulfur- and phosphorus-free oil-soluble heterocyclic ring-based molecules exhibits differing thermal and chemical stability depending on the degree of aromatization and number of linking spacers within the central heterocyclic ring. Thermally stable triazine and cyclen FMs significantly increase friction performance in the boundary lubrication regime. Cyclens in particular reduce friction by up to 70% over a wide temperature range. Detailed experimental investigations of the newly synthesized FMs at elevated temperatures demonstrate their favorable tribological performance under four operating conditions: variable-temperature sliding, linear speed ramping, reciprocating sliding, and rolling–sliding contact. These latest experimental findings suggest the potential of the application of “designer” heterocyclic FMs for reducing frictional loss in motor vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  Google Scholar 

  2. Schäfer, A., Heywood, J.B., Weiss, M.A.: Future fuel cell and internal combustion engine automobile technologies: a 25-year life cycle and fleet impact assessment. Energy 31, 2064–2087 (2006)

    Article  Google Scholar 

  3. Greene, D.L., DeCicco, J.: Engineering-economic analyses of automotive fuel economy potential in the United States. Annu. Rev. Energy Environ. 25, 477–536 (2000)

    Article  Google Scholar 

  4. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012)

    Article  Google Scholar 

  5. Holmberg, K., Andersson, P., Nylund, N.-O., Mäkelä, K., Erdemir, A.: Global energy consumption due to friction in trucks and buses. Tribol. Int. 78, 94–114 (2014)

    Article  Google Scholar 

  6. Tung, S.C., McMillan, M.L.: Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 37, 517–536 (2004)

    Article  Google Scholar 

  7. Wong, V.W., Tung, S.C.: Overview of automotive engine friction and reduction trends–effects of surface, material, and lubricant-additive technologies. Friction 4, 1–28 (2016)

    Article  Google Scholar 

  8. Priest, M., Taylor, C.M.: Automobile engine tribology—approaching the surface. Wear 241, 193–203 (2000)

    Article  Google Scholar 

  9. Zhu, D.: Mixed EHL. In: Wang, Q.J., Chung, Y.-W. (eds.) Encyclopedia of Tribology, pp. 2266–2276. Springer, Berlin (2013)

    Chapter  Google Scholar 

  10. Bhushan, B.: Principles and Applications of Tribology. Wiley, New York (2013)

    Book  Google Scholar 

  11. Hsu, S.M., Gates, R.S.: Boundary lubricating films: formation and lubrication mechanism. Tribol. Int. 38, 305–312 (2005)

    Article  Google Scholar 

  12. Zhang, J., Meng, Y.: Boundary lubrication by adsorption film. Friction 3, 115–147 (2015)

    Article  Google Scholar 

  13. Srivastava, S.P.: Advances in Lubricant Additives and Tribology. CRC Press, Boca Raton (2009)

    Google Scholar 

  14. Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  15. Spikes, H.: Friction modifier additives. Tribol. Lett. 60, 5 (2015)

    Article  Google Scholar 

  16. Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014)

    Article  Google Scholar 

  17. Qu, J., Barnhill, W.C., Luo, H., Meyer, H.M., Leonard, D.N., Landauer, A.K., et al.: Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015)

    Article  Google Scholar 

  18. Palacio, M., Bhushan, B.: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv. Mater. 20, 1194–1198 (2008)

    Article  Google Scholar 

  19. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., et al.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces 4, 997–1002 (2012)

    Article  Google Scholar 

  20. Gauvin, M., Zheng, H., Suen, B., Lee, J., Kang, H.J., Talke, F.E.: Enhanced photo-thermal stability of modified PFPE lubricants under laser beam exposure. IEEE Trans. Magn. 47, 1849–1854 (2011)

    Article  Google Scholar 

  21. Kang, H.-J., Perettie, D.J., Talke, F.E.: A study of phase separation characteristics of perfluoropolyether/phosphazene (X-1P) lubricant mixtures on hard disk surfaces. Tribol. Lett. 35, 2385–2387 (1999)

    Google Scholar 

  22. Miller, B.P., Theodore, N.D., Brukman, M.J., Wahl, K.J., Krim, J.: A nano-to macroscale tribological study of PFTS and TCP lubricants for Si MEMS applications. Tribol. Lett. 38, 69–78 (2010)

    Article  Google Scholar 

  23. Desanker, M., Johnson, B., Seyam, A.M., Chung, Y.-W., Bazzi, H.S., Delferro, M., et al.: Oil-soluble silver-organic molecule for in situ deposition of lubricious metallic silver at high temperatures. ACS Appl. Mater. Interfaces 8, 13637–13645 (2016)

    Article  Google Scholar 

  24. Desanker, M., He, X., Lu, J., Liu, P., Pickens, D.B., Delferro, M., et al.: Alkyl-cyclens as effective sulfur- and phosphorus-free friction modifiers for boundary lubrication. ACS Appl. Mater. Interfaces 9, 9118–9125 (2017)

    Article  Google Scholar 

  25. Muraki, M., Yanagi, Y., Sakaguchi, K.: Synergistic effect on frictional characteristics under rolling–sliding conditions due to a combination of molybdenum dialkyldithiocarbamate and zinc dialkyldithiophosphate. Tribol. Int. 30, 69–75 (1997)

    Article  Google Scholar 

  26. Miklozic, K.T., Graham, J., Spikes, H.: Chemical and physical analysis of reaction films formed by molybdenum dialkyl-dithiocarbamate friction modifier additive using Raman and atomic force microscopy. Tribol. Lett. 11, 71–81 (2001)

    Article  Google Scholar 

  27. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)

    Article  Google Scholar 

  28. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions in boundary lubrication—the effect of temperature and ZDDP/MoDTC ratio. Tribol. Int. 39, 1545–1557 (2006)

    Article  Google Scholar 

  29. Georges, E., Georges, J.-M., Diraison, C.: Rheology of olefinic copolymer layers adsorbed on solid surfaces. Tribol. Trans. 39, 563–570 (1996)

    Article  Google Scholar 

  30. Cann, P.M., Spikes, H.A.: The behavior of polymer solutions in concentrated contacts: immobile surface layer formation. Tribol. Trans. 37, 580–586 (1994)

    Article  Google Scholar 

  31. Liu, L., Sun, C., Li, Z., Chen, Y., Qian, X., Wen, S., et al.: In-chain functionalized polymer induced assembly of nanoparticles: toward materials with tailored properties. Soft Matter 12, 1964–1968 (2016)

    Article  Google Scholar 

  32. Aoki, S., Yamada, Y., Fukada, D., Suzuki, A., Masuko, M.: Verification of the advantages in friction-reducing performance of organic polymers having multiple adsorption sites. Tribol. Int. 59, 57–66 (2013)

    Article  Google Scholar 

  33. Guangteng, G., Smeeth, M., Cann, P.M., Spikes, H.A.: Measurement and modelling of boundary film properties of polymeric lubricant additives. Proc. Inst. Mech. Eng. J J. Eng. 210, 1–15 (1996)

    Article  Google Scholar 

  34. Spear, J.C., Ewers, B.W., Batteas, J.D.: 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 10, 301–314 (2015)

    Article  Google Scholar 

  35. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013)

    Article  Google Scholar 

  36. He, X., Xiao, H., Kyle, J.P., Terrell, E.J., Liang, H.: Two-dimensional nanostructured Y2O3 particles for viscosity modification. Appl. Phys. Lett. 104, 163107 (2014)

    Article  Google Scholar 

  37. He, X., Xiao, H., Choi, H., Díaz, A., Mosby, B., Clearfield, A., et al.: α-Zirconium phosphate nanoplatelets as lubricant additives. Colloids Surf. A 452, 32–38 (2014)

    Article  Google Scholar 

  38. Dou, X., Koltonow, A.R., He, X., Jang, H.D., Wang, Q., Chung, Y.-W., et al.: Self-dispersed crumpled graphene balls in oil for friction and wear reduction. Proc. Natl. Acad. Sci. USA 113, 1528–1533 (2016)

    Article  Google Scholar 

  39. Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)

    Article  Google Scholar 

  40. Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., et al.: Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 35, 127–131 (2009)

    Article  Google Scholar 

  41. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)

    Article  Google Scholar 

  42. Liu, W., Ye, C., Zhang, Z., Yu, L.: Relationship between molecular structures and tribological properties of phosphazene lubricants. Wear 252, 394–400 (2002)

    Article  Google Scholar 

  43. Waltman, R.J., Kobayashi, N., Shirai, K., Khurshudov, A., Deng, H.: The tribological properties of a new cyclotriphosphazene-terminated perfluoropolyether lubricant. Tribol. Lett. 16, 151–162 (2004)

    Article  Google Scholar 

  44. Liu, W., Zhu, J., Liang, Y.: Effect of bridged cyclotriphosphazenes as lubricants on the tribological properties of a steel-on-steel system. Wear 258, 725–729 (2005)

    Article  Google Scholar 

  45. Nader, B.S., Kar, K.K., Morgan, T.A., Pawloski, C.E., Dilling, W.L.: Development and tribological properties of new cyclotriphosphazene high temperature lubricants for aircraft gas turbine engines. Tribol. Trans. 35, 37–44 (1992)

    Article  Google Scholar 

  46. Kasai, P.H., Wakabayashi, A.: Disk lubricant additives, A20H and C2: characteristics and chemistry in the disk environment. Tribol. Lett. 31, 25–35 (2008)

    Article  Google Scholar 

  47. Graymore, J.: 175. The reduction products of certain cyclic methyleneamines: Part II. J. Chem. Soc. https://doi.org/10.1039/JR9320001353 (1932)

    Google Scholar 

  48. Jones, G.O., García, J.M., Horn, H.W., Hedrick, J.L.: Computational and experimental studies on the mechanism of formation of poly(hexahydrotriazine)s and poly(hemiaminal)s from the reactions of amines with formaldehyde. Org. Lett. 16, 5502–5505 (2014)

    Article  Google Scholar 

  49. Xiangqiong, Z., Heyang, S., Wenqi, R., Zhongyi, H., Tianhui, R.: Tribological study of trioctylthiotriazine derivative as lubricating oil additive. Wear 258, 800–805 (2005)

    Article  Google Scholar 

  50. Xiong, X.-Q., Liang, F., Yang, L., Wang, X.-L., Zhou, X., Zheng, C.-Y., et al.: Transcription-Inhibition and antitumor activities of N-alkylated tetraazacyclododecanes. Chem. Biodivers. 4, 2191–2797 (2007)

    Google Scholar 

  51. Wuest, J.D., Rochefort, A.: Strong adsorption of aminotriazines on graphene. Chem. Commun. 46, 2923–2925 (2010)

    Article  Google Scholar 

  52. Zhu, D., Wang, Q.J.: Elastohydrodynamic lubrication: a gateway to interfacial mechanics—review and prospect. J. Tribol. 133, 041001 (2011)

    Article  Google Scholar 

  53. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part 1—theoretical formulation. J. Lubr. Technol. 98, 223–228 (1976)

    Article  Google Scholar 

  54. Chapkov, A.D., Bair, S., Cann, P., Lubrecht, A.A.: Film thickness in point contacts under generalized Newtonian EHL conditions: numerical and experimental analysis. Tribol. Int. 40, 1474–1478 (2007)

    Article  Google Scholar 

  55. Krupka, I., Bair, S., Kumar, P., Khonsari, M.M., Hartl, M.: An experimental validation of the recently discovered scale effect in generalized Newtonian EHL. Tribol. Lett. 33, 127–135 (2009)

    Article  Google Scholar 

  56. Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM: self-assembly of octadecylamine. Tribol. Lett. 58, 39 (2015)

    Article  Google Scholar 

  57. He, X., Lu, J., Desanker, M., Invergo, A.M., Lohr, T.L., Ren, N., et al.: Boundary lubrication mechanisms for high-performance friction modifiers. Submitted (2018)

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the US Department of Energy under contract DE-EE0006449. Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The NMR instrumentation at IMSERC was supported by the National Science Foundation under CHE-9871268, and GC–MS instrumentation was supported by a donation from Pfizer. M. Desanker was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. We thank AkzoNobel for generously providing Armeen T® to us. We would also like to thank Mr. L. Kangmeng and R. Xu for helping in disk preparation, and Ms. X. Cheng for the assistance with rolling–sliding friction data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobin J. Marks, Q. Jane Wang or Yip-Wah Chung.

Ethics declarations

Conflict of interest

The authors declare the following competing financial interest(s): A patent application related to this work has been filed (US Patent Application PCT/US2016/031868).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desanker, M., He, X., Lu, J. et al. High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication. Tribol Lett 66, 50 (2018). https://doi.org/10.1007/s11249-018-0996-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-0996-z

Keywords

Navigation