Advertisement

Tribology Letters

, 66:50 | Cite as

High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication

  • Michael Desanker
  • Xingliang He
  • Jie Lu
  • Blake A. Johnson
  • Zhong Liu
  • Massimiliano Delferro
  • Ning Ren
  • Frances E. Lockwood
  • Aaron Greco
  • Ali Erdemir
  • Tobin J. Marks
  • Q. Jane Wang
  • Yip-Wah Chung
Original Paper
  • 344 Downloads

Abstract

The demand for increased energy efficiency continuously drives the development of new lubricants. Here we report the design and synthesis of hexahydrotriazine, triazine, and cyclen derivatives as friction modifiers (FMs) for enhanced fuel economy. This series of sulfur- and phosphorus-free oil-soluble heterocyclic ring-based molecules exhibits differing thermal and chemical stability depending on the degree of aromatization and number of linking spacers within the central heterocyclic ring. Thermally stable triazine and cyclen FMs significantly increase friction performance in the boundary lubrication regime. Cyclens in particular reduce friction by up to 70% over a wide temperature range. Detailed experimental investigations of the newly synthesized FMs at elevated temperatures demonstrate their favorable tribological performance under four operating conditions: variable-temperature sliding, linear speed ramping, reciprocating sliding, and rolling–sliding contact. These latest experimental findings suggest the potential of the application of “designer” heterocyclic FMs for reducing frictional loss in motor vehicles.

Keywords

Lubricant additive Friction modifier Boundary lubrication Heterocyclic 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the US Department of Energy under contract DE-EE0006449. Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The NMR instrumentation at IMSERC was supported by the National Science Foundation under CHE-9871268, and GC–MS instrumentation was supported by a donation from Pfizer. M. Desanker was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. We thank AkzoNobel for generously providing Armeen T® to us. We would also like to thank Mr. L. Kangmeng and R. Xu for helping in disk preparation, and Ms. X. Cheng for the assistance with rolling–sliding friction data collection.

Compliance with Ethical Standards

Conflict of interest

The authors declare the following competing financial interest(s): A patent application related to this work has been filed (US Patent Application PCT/US2016/031868).

References

  1. 1.
    Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)CrossRefGoogle Scholar
  2. 2.
    Schäfer, A., Heywood, J.B., Weiss, M.A.: Future fuel cell and internal combustion engine automobile technologies: a 25-year life cycle and fleet impact assessment. Energy 31, 2064–2087 (2006)CrossRefGoogle Scholar
  3. 3.
    Greene, D.L., DeCicco, J.: Engineering-economic analyses of automotive fuel economy potential in the United States. Annu. Rev. Energy Environ. 25, 477–536 (2000)CrossRefGoogle Scholar
  4. 4.
    Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012)CrossRefGoogle Scholar
  5. 5.
    Holmberg, K., Andersson, P., Nylund, N.-O., Mäkelä, K., Erdemir, A.: Global energy consumption due to friction in trucks and buses. Tribol. Int. 78, 94–114 (2014)CrossRefGoogle Scholar
  6. 6.
    Tung, S.C., McMillan, M.L.: Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 37, 517–536 (2004)CrossRefGoogle Scholar
  7. 7.
    Wong, V.W., Tung, S.C.: Overview of automotive engine friction and reduction trends–effects of surface, material, and lubricant-additive technologies. Friction 4, 1–28 (2016)CrossRefGoogle Scholar
  8. 8.
    Priest, M., Taylor, C.M.: Automobile engine tribology—approaching the surface. Wear 241, 193–203 (2000)CrossRefGoogle Scholar
  9. 9.
    Zhu, D.: Mixed EHL. In: Wang, Q.J., Chung, Y.-W. (eds.) Encyclopedia of Tribology, pp. 2266–2276. Springer, Berlin (2013)CrossRefGoogle Scholar
  10. 10.
    Bhushan, B.: Principles and Applications of Tribology. Wiley, New York (2013)CrossRefGoogle Scholar
  11. 11.
    Hsu, S.M., Gates, R.S.: Boundary lubricating films: formation and lubrication mechanism. Tribol. Int. 38, 305–312 (2005)CrossRefGoogle Scholar
  12. 12.
    Zhang, J., Meng, Y.: Boundary lubrication by adsorption film. Friction 3, 115–147 (2015)CrossRefGoogle Scholar
  13. 13.
    Srivastava, S.P.: Advances in Lubricant Additives and Tribology. CRC Press, Boca Raton (2009)Google Scholar
  14. 14.
    Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  15. 15.
    Spikes, H.: Friction modifier additives. Tribol. Lett. 60, 5 (2015)CrossRefGoogle Scholar
  16. 16.
    Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014)CrossRefGoogle Scholar
  17. 17.
    Qu, J., Barnhill, W.C., Luo, H., Meyer, H.M., Leonard, D.N., Landauer, A.K., et al.: Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015)CrossRefGoogle Scholar
  18. 18.
    Palacio, M., Bhushan, B.: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv. Mater. 20, 1194–1198 (2008)CrossRefGoogle Scholar
  19. 19.
    Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., et al.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces 4, 997–1002 (2012)CrossRefGoogle Scholar
  20. 20.
    Gauvin, M., Zheng, H., Suen, B., Lee, J., Kang, H.J., Talke, F.E.: Enhanced photo-thermal stability of modified PFPE lubricants under laser beam exposure. IEEE Trans. Magn. 47, 1849–1854 (2011)CrossRefGoogle Scholar
  21. 21.
    Kang, H.-J., Perettie, D.J., Talke, F.E.: A study of phase separation characteristics of perfluoropolyether/phosphazene (X-1P) lubricant mixtures on hard disk surfaces. Tribol. Lett. 35, 2385–2387 (1999)Google Scholar
  22. 22.
    Miller, B.P., Theodore, N.D., Brukman, M.J., Wahl, K.J., Krim, J.: A nano-to macroscale tribological study of PFTS and TCP lubricants for Si MEMS applications. Tribol. Lett. 38, 69–78 (2010)CrossRefGoogle Scholar
  23. 23.
    Desanker, M., Johnson, B., Seyam, A.M., Chung, Y.-W., Bazzi, H.S., Delferro, M., et al.: Oil-soluble silver-organic molecule for in situ deposition of lubricious metallic silver at high temperatures. ACS Appl. Mater. Interfaces 8, 13637–13645 (2016)CrossRefGoogle Scholar
  24. 24.
    Desanker, M., He, X., Lu, J., Liu, P., Pickens, D.B., Delferro, M., et al.: Alkyl-cyclens as effective sulfur- and phosphorus-free friction modifiers for boundary lubrication. ACS Appl. Mater. Interfaces 9, 9118–9125 (2017)CrossRefGoogle Scholar
  25. 25.
    Muraki, M., Yanagi, Y., Sakaguchi, K.: Synergistic effect on frictional characteristics under rolling–sliding conditions due to a combination of molybdenum dialkyldithiocarbamate and zinc dialkyldithiophosphate. Tribol. Int. 30, 69–75 (1997)CrossRefGoogle Scholar
  26. 26.
    Miklozic, K.T., Graham, J., Spikes, H.: Chemical and physical analysis of reaction films formed by molybdenum dialkyl-dithiocarbamate friction modifier additive using Raman and atomic force microscopy. Tribol. Lett. 11, 71–81 (2001)CrossRefGoogle Scholar
  27. 27.
    Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)CrossRefGoogle Scholar
  28. 28.
    Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions in boundary lubrication—the effect of temperature and ZDDP/MoDTC ratio. Tribol. Int. 39, 1545–1557 (2006)CrossRefGoogle Scholar
  29. 29.
    Georges, E., Georges, J.-M., Diraison, C.: Rheology of olefinic copolymer layers adsorbed on solid surfaces. Tribol. Trans. 39, 563–570 (1996)CrossRefGoogle Scholar
  30. 30.
    Cann, P.M., Spikes, H.A.: The behavior of polymer solutions in concentrated contacts: immobile surface layer formation. Tribol. Trans. 37, 580–586 (1994)CrossRefGoogle Scholar
  31. 31.
    Liu, L., Sun, C., Li, Z., Chen, Y., Qian, X., Wen, S., et al.: In-chain functionalized polymer induced assembly of nanoparticles: toward materials with tailored properties. Soft Matter 12, 1964–1968 (2016)CrossRefGoogle Scholar
  32. 32.
    Aoki, S., Yamada, Y., Fukada, D., Suzuki, A., Masuko, M.: Verification of the advantages in friction-reducing performance of organic polymers having multiple adsorption sites. Tribol. Int. 59, 57–66 (2013)CrossRefGoogle Scholar
  33. 33.
    Guangteng, G., Smeeth, M., Cann, P.M., Spikes, H.A.: Measurement and modelling of boundary film properties of polymeric lubricant additives. Proc. Inst. Mech. Eng. J J. Eng. 210, 1–15 (1996)CrossRefGoogle Scholar
  34. 34.
    Spear, J.C., Ewers, B.W., Batteas, J.D.: 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 10, 301–314 (2015)CrossRefGoogle Scholar
  35. 35.
    Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013)CrossRefGoogle Scholar
  36. 36.
    He, X., Xiao, H., Kyle, J.P., Terrell, E.J., Liang, H.: Two-dimensional nanostructured Y2O3 particles for viscosity modification. Appl. Phys. Lett. 104, 163107 (2014)CrossRefGoogle Scholar
  37. 37.
    He, X., Xiao, H., Choi, H., Díaz, A., Mosby, B., Clearfield, A., et al.: α-Zirconium phosphate nanoplatelets as lubricant additives. Colloids Surf. A 452, 32–38 (2014)CrossRefGoogle Scholar
  38. 38.
    Dou, X., Koltonow, A.R., He, X., Jang, H.D., Wang, Q., Chung, Y.-W., et al.: Self-dispersed crumpled graphene balls in oil for friction and wear reduction. Proc. Natl. Acad. Sci. USA 113, 1528–1533 (2016)CrossRefGoogle Scholar
  39. 39.
    Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)CrossRefGoogle Scholar
  40. 40.
    Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., et al.: Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 35, 127–131 (2009)CrossRefGoogle Scholar
  41. 41.
    Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)CrossRefGoogle Scholar
  42. 42.
    Liu, W., Ye, C., Zhang, Z., Yu, L.: Relationship between molecular structures and tribological properties of phosphazene lubricants. Wear 252, 394–400 (2002)CrossRefGoogle Scholar
  43. 43.
    Waltman, R.J., Kobayashi, N., Shirai, K., Khurshudov, A., Deng, H.: The tribological properties of a new cyclotriphosphazene-terminated perfluoropolyether lubricant. Tribol. Lett. 16, 151–162 (2004)CrossRefGoogle Scholar
  44. 44.
    Liu, W., Zhu, J., Liang, Y.: Effect of bridged cyclotriphosphazenes as lubricants on the tribological properties of a steel-on-steel system. Wear 258, 725–729 (2005)CrossRefGoogle Scholar
  45. 45.
    Nader, B.S., Kar, K.K., Morgan, T.A., Pawloski, C.E., Dilling, W.L.: Development and tribological properties of new cyclotriphosphazene high temperature lubricants for aircraft gas turbine engines. Tribol. Trans. 35, 37–44 (1992)CrossRefGoogle Scholar
  46. 46.
    Kasai, P.H., Wakabayashi, A.: Disk lubricant additives, A20H and C2: characteristics and chemistry in the disk environment. Tribol. Lett. 31, 25–35 (2008)CrossRefGoogle Scholar
  47. 47.
    Graymore, J.: 175. The reduction products of certain cyclic methyleneamines: Part II. J. Chem. Soc.  https://doi.org/10.1039/JR9320001353 (1932)Google Scholar
  48. 48.
    Jones, G.O., García, J.M., Horn, H.W., Hedrick, J.L.: Computational and experimental studies on the mechanism of formation of poly(hexahydrotriazine)s and poly(hemiaminal)s from the reactions of amines with formaldehyde. Org. Lett. 16, 5502–5505 (2014)CrossRefGoogle Scholar
  49. 49.
    Xiangqiong, Z., Heyang, S., Wenqi, R., Zhongyi, H., Tianhui, R.: Tribological study of trioctylthiotriazine derivative as lubricating oil additive. Wear 258, 800–805 (2005)CrossRefGoogle Scholar
  50. 50.
    Xiong, X.-Q., Liang, F., Yang, L., Wang, X.-L., Zhou, X., Zheng, C.-Y., et al.: Transcription-Inhibition and antitumor activities of N-alkylated tetraazacyclododecanes. Chem. Biodivers. 4, 2191–2797 (2007)Google Scholar
  51. 51.
    Wuest, J.D., Rochefort, A.: Strong adsorption of aminotriazines on graphene. Chem. Commun. 46, 2923–2925 (2010)CrossRefGoogle Scholar
  52. 52.
    Zhu, D., Wang, Q.J.: Elastohydrodynamic lubrication: a gateway to interfacial mechanics—review and prospect. J. Tribol. 133, 041001 (2011)CrossRefGoogle Scholar
  53. 53.
    Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part 1—theoretical formulation. J. Lubr. Technol. 98, 223–228 (1976)CrossRefGoogle Scholar
  54. 54.
    Chapkov, A.D., Bair, S., Cann, P., Lubrecht, A.A.: Film thickness in point contacts under generalized Newtonian EHL conditions: numerical and experimental analysis. Tribol. Int. 40, 1474–1478 (2007)CrossRefGoogle Scholar
  55. 55.
    Krupka, I., Bair, S., Kumar, P., Khonsari, M.M., Hartl, M.: An experimental validation of the recently discovered scale effect in generalized Newtonian EHL. Tribol. Lett. 33, 127–135 (2009)CrossRefGoogle Scholar
  56. 56.
    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM: self-assembly of octadecylamine. Tribol. Lett. 58, 39 (2015)CrossRefGoogle Scholar
  57. 57.
    He, X., Lu, J., Desanker, M., Invergo, A.M., Lohr, T.L., Ren, N., et al.: Boundary lubrication mechanisms for high-performance friction modifiers. Submitted (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Valvoline Inc.LexingtonUSA
  4. 4.Energy Systems DivisionArgonne National LaboratoryLemontUSA
  5. 5.Department of Material Science and EngineeringNorthwestern UniversityEvanstonUSA
  6. 6.Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontUSA

Personalised recommendations