Skip to main content

Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content

Abstract

A conventional breeding program was established to transfer the bacterial phytoene synthase transgene–crtB–from a transgenic, white-rooted cassava to yellow-rooted cassava plants carrying the endogenous phytoene synthase alleles named psy2-y 1 and/or psy2-y 2. Combining endogenous phytoene synthase enzymes (PSYs) with CRTB in a single cassava plant would allow the molecular dissection of individual allele contributions to carotenoid synthesis and/or accumulation in cassava roots. The simultaneous expression of the crtB transgene and psy2-y 2 in individuals planted in the field coincided with higher total, HPLC-quantified carotenoid content in roots, although the variability among replications (plants) precluded the detection of statistically significant differences. Nevertheless, the highest total carotenoid content in roots within a family coincided with one individual of the F1 progeny carrying both psy2-y 2 and crtB genes. The results also indicated the presence of at least one more key gene–different from psy or crtB—which too is necessary for the synthesis and/or accumulation of Pro-Vitamin A carotenoids in cassava roots.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arango J (2010) Towards pro-vitamin A accumulation in cassava roots through genetic modification: Phytoene Synthase catalyzes the rate-limiting step. Dissertation. Albert-Ludwigs-Universitat, Freiburg

    Google Scholar 

  2. Arango J, Wust F, Beyer P, Welsch R (2010) Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta 232(5):1251–1262

    CAS  Article  PubMed  Google Scholar 

  3. Belalcazar J, Dufour D, Pizarro M, Luna J, Londoño L, Morante N, Calle F, Jaramillo AM, Pino L, Becerra LA, Davrieux F, Ceballos H (2016) High-throughput phenotyping and improvements in breeding cassava for increased carotenoids in the roots. Crop Sci 56:2916–2925

    Article  Google Scholar 

  4. Beltran J, Prias M, Al-Babili S, Ladino Y, Lopez D, Beyer P, Chavarriaga P, Tohme J (2010) Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz). Planta 231:1413–1424

    CAS  Article  PubMed  Google Scholar 

  5. Bonilla A (2010) Análisis de expresión de una miniruta de síntesis de carotenos en yuca (Manihot esculenta Crantz) transgénica por medio de qRT-PCR (reacción en cadena de la polimerasa en tiempo real). Universidad del Quindío, Armenia

    Google Scholar 

  6. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoid handbook. Basel, Birkhaüser

    Book  Google Scholar 

  7. Cadavid LF (2002) Suelo y fertilización para la yuca. In: Ospina B, Ceballos H (eds) La yuca en el tercer milenio: sistemas modernos de producción, procesamiento, utilización y comercialización, vol 327. © CIAT, Cali, pp 76–103

    Google Scholar 

  8. Calle F (2002) Control de malezas en el cultivo de la yuca. In: Ospina B, Ceballos H (eds) La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización, vol 327. © CIAT, Cali, pp 126–128

    Google Scholar 

  9. Ceballos H, Iglesias C, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516

    CAS  Article  PubMed  Google Scholar 

  10. Ceballos H, Morante N, Sánchez T, Ortiz D, Aragón I, Chávez AL, Pizarro M, Calle F, Dufour D (2013) Rapid cycling recurrent selection for increased carotenoids content in cassava root. Crop Sci 53:2342–2351

    CAS  Article  Google Scholar 

  11. Chavarriaga P (2013) Biotecnología y mejoramiento convencional para incrementar el valor nutricional de la raíz de yuca (Manihot esculenta Crantz). Ph.D. dissertation. Doctorado en Ciencias-Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia. (330 p)

  12. Chavarriaga-Aguirre P, Brand A, Medina A, Prías A, Escobar R, Martinez JF, Díaz P, López C, Roca WM, Tohme J (2016) The potential of using biotechnology to improve cassava: a review. In Vitro Cell Dev-Pl 52(5):461–478. doi:10.1007/s11627-016-9776-3

    CAS  Article  Google Scholar 

  13. Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverri J, Bolaños E, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133

    Article  Google Scholar 

  14. Failla ML, Chitchumroonchokchai C, Siritunga D, De Moura FF, Fregene M, Sayre RT (2012) Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. J Agric Food Chem 60:3861–3866

    CAS  Article  PubMed  Google Scholar 

  15. FAO (2013) Save and grow cassava: a guide to sustainable production and identification. E-ISBN 978-92-5-107642-2

  16. Harjes CE, Rocheford TR, Bai L, Brutnel TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Howe JA, Maziya-Dixon B, Tanumihardjo SA (2009) Cassava with enhanced β-carotene maintains adequate vitamin A status in Mongolian gerbils (Meriones unguiculatus) despite substantial cis-isomer content. Brit J Nutr 102:342–349

    CAS  Article  PubMed  Google Scholar 

  18. Li F, Vallabhaneni R, Wurtzel ET (2008) Psy3, a new member of the Phytoene Synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Phys 146:1333–1345

    CAS  Article  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408

    CAS  Article  PubMed  Google Scholar 

  20. Lopez AB, Yang Y, Tannhauser TW, Li L (2008) Phytoene desaturase is present in a large protein complex in the plastid membrane. Physiol Plantarum 133:190–198

    CAS  Article  Google Scholar 

  21. Morillo Y, Sanchez T, Morante N, Chavez AL, Morillo AC, Bolaños A, Ceballos H (2012) Estudio preliminar de herencia del contenido de carotenoides en raíces de poblaciones segregantes de yuca (Manihot esculenta Crantz). Acta Agronómica 61(3):253–264

    Google Scholar 

  22. Morillo-Coronado Y (2009) Herencia del contenido de carotenos en raíces de yuca Manihot esculenta Crantz. Universidad Nacional de Colombia. Palmira, Colombia, Tesis de doctorado, p 225

    Google Scholar 

  23. Naqvi S, Zhu C, Farre G, Sandmann G, Capell C, Christou P (2011) Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid. Zeaxanthin Plant Biotechnol J 9:384–393

    CAS  Article  PubMed  Google Scholar 

  24. Ortiz D, Sánchez T, Morante N, Ceballos H, Pachón H, Duque MC, Chávez AL, Escobar AF (2011) Sampling strategies for proper quantification of carotenoid content in cassava breeding. J Plant Breed Crop Sci 3(1):14–23

    Google Scholar 

  25. Ovalle T, Perea C, Pizarro M, Morante N, Ceballos H, Dufour D, Meike A, Becerra LA (2016) Elucidating high beta-carotene accumulation in cassava based on next-generation sequencing. In: world congress on root and tuber crops, Abstract No. SP06-16, Jan 18–22, 2016, Nanning, Guangxi, China

  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res 29(900):2002–2007

    Google Scholar 

  27. Quinlan RF, Shumskaya M, Bradbury LMT, Beltran J, Ma C, Kennelly EJ, Wurtzel E (2012) Synergistic interactions between carotene ring hydroxylases drive Lutein formation in plant carotenoid biosynthesis. Plant Phys 160(1):204–214

    CAS  Article  Google Scholar 

  28. Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book/American Society of Plant Biologists 10:e0158. doi:10.1199/tab.0158

    PubMed Central  Google Scholar 

  29. Santos CA, Philipp WS (2006) Heritabilities and minimum gene number estimates of carrot carotenoids. Euphytica 151:79–86

    CAS  Article  Google Scholar 

  30. Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, Vanderschuren H, Zhang P (2011) The bio-cassava plus program: bio fortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62:251–272

    CAS  Article  PubMed  Google Scholar 

  31. Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P (2007) Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Phys 145:1073–1085

    CAS  Article  Google Scholar 

  32. Welsch R, Wüst F, Bär C, Al-Babili S, Beyer P (2008) A third Phytoene Synthase is devoted to abiotic stress-induced ABA formation in rice and defines functional diversification of PSYs. Plant Phys 147:367–380

    CAS  Article  Google Scholar 

  33. Welsch R, Arango R, Bär C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Pro-vitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a Phytoene Synthase gene. Plant Cell 22:3348–3356

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D (2010) Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Rep 29(9):1061–1068

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to knowledge the support received from HarvestPlus’ (www.harvestplus.org) to develop research on cassava bio-fortification.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Chavarriaga-Aguirre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 465 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chavarriaga-Aguirre, P., Prías, M., López, D. et al. Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content. Transgenic Res 26, 639–651 (2017). https://doi.org/10.1007/s11248-017-0037-y

Download citation

Keywords

  • Micronutrients
  • Root biofortification
  • Transgenic cassava
  • Pro-Vitamin A
  • β-carotene
  • Transgenic field testing
  • Carotenoids