Mechanism and Kinetics of Ethane Aromatization According to the Chemical Transient Analysis

Abstract

The need for on-purpose techniques for the conversion of cheaper and abundant light alkanes to petrochemical products has revitalized research interests on light alkanes aromatization. Here ethane/propane aromatization and ethylene oligomerization over the representative Zn-HZSM-5 and Pt/HZSM-5 catalysts have been studied by the step-perturbation transients to provide insight into the kinetics and mechanisms leading to higher olefins and aromatics formation from ethane aromatization. The time-dependent catalytic behavior during the build-up and back-transient between ethane and inert, ethane and propane, as well as ethylene and inert, has been extensively discussed. We suggested that the hydrocarbon-pool mechanism be involved once ethylene was produced from the dehydrogenation of ethane. The oligomerization/cracking, cyclization, and dehydrogenation/hydride transfer reactions involved with the hydrocarbon-pool species reach the thermodynamic equilibrium quickly. The initial ethane dehydrogenation and the final formation of aromatics from their corresponding intermediates are slow surface-reactions. The rate constants k for benzene, toluene, and xylene formation from the “lumped hydrocarbon-pool” have been evaluated based on the first-order kinetic model of the back-transient. The rate constants k for aromatics over the Pt0 clusters/particles in the Pt/HZSM-5 are ⁓ 20–30% higher than that over the Zn (II) cations in the Zn-HZSM-5 catalyst.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Howarth RW, Ingraffea A, Engelder T (2011) Should fracking stop? Nature 477:271–275

    CAS  PubMed  Google Scholar 

  2. 2.

    https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=M_EPL2_FPF_NUS_MBBLD&f=M

  3. 3.

    Xiang Y, Wang H, Cheng J, Matsubu J (2018) Progress and prospects in catalytic ethane aromatization. Catal Sci Technol 8(6):1500–1516

    CAS  Google Scholar 

  4. 4.

    Sattler JJ, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653

    CAS  PubMed  Google Scholar 

  5. 5.

    Csicsery SM (1970) Dehydrocyclodimerization: II. Dehydrocyclodimerization of propane and pentane over supported platinum catalyst. J Catal 17(2):216–218

    CAS  Google Scholar 

  6. 6.

    Csicsery SM (1970) Dehydrocyclodimerization: I. Dehydrocyclodimerization of butanes over supported platinum catalysts. J Catal 17(2):207–215

    CAS  Google Scholar 

  7. 7.

    National Academies of Sciences E, and Medicine (2016) The changing landscape of hydrocarbon feedstocks for chemical production: implications for catalysis: Proceedings of a Workshop. The National Academies Press, Washington, DC. doi: https://doi.org/10.17226/23555

  8. 8.

    Hagen A, Roessner F (2000) Ethane to aromatic hydrocarbons: past, present, future. Catal Rev 42(4):403

    CAS  Google Scholar 

  9. 9.

    Bragin OV, Shpiro ES, Preobrazhensky AV, Isaev SA, Vasina TV, Dyusenbina BB, Antoshin GV, Minachev KM (1986) The state of platinum in high-silica zeolites and its catalytic activity in ethane and propane aromatization. Appl Catal 27(2):219–231

    CAS  Google Scholar 

  10. 10.

    Steinberg K-H, Mroczek U, Roessner F (1990) Aromatization of ethane on platinum containing ZSM-5 zeolites. Appl Catal 66(1):37–44

    CAS  Google Scholar 

  11. 11.

    Lauritzen AM, Madgavkar AM (2015) Process for the conversion of ethane to aromatic hydrocarbons 11. Google Patents, US20140256536A1

  12. 12.

    Vosmerikova LN, Barbashin YE, Vosmerikov AV (2014) Catalytic aromatization of ethane on zinc-modified zeolites of various framework types. Petrol Chem 54(6):420–425

    CAS  Google Scholar 

  13. 13.

    Mehdad A, Lobo RF (2017) Ethane and ethylene aromatization on zinc-containing zeolites. Catal Sci Technol 7(16):3562–3572

    CAS  Google Scholar 

  14. 14.

    Mehdad A, Gould NS, Xu B, Lobo RF (2018) Effect of steam and CO2 on ethane activation over Zn-ZSM-5. Catal Sci Technol 8(1):358–366

    CAS  Google Scholar 

  15. 15.

    Choudhary VR, Kinage AK, Choudhary TV (1997) Effective low-temperature aromatization of ethane over H-galloaluminosilicate(MFI) zeolites in the presence of higher alkanes or olefins. Angew Chem Int Ed 36(12):1305–1308

    CAS  Google Scholar 

  16. 16.

    Samanta A, Bai X, Robinson B, Chen H, Hu J (2017) Conversion of light alkane to value-added chemicals over ZSM-5/metal promoted catalysts. Ind Eng Chem Res 56(39):11006–11012

    CAS  Google Scholar 

  17. 17.

    Ma L, Zou X (2019) Cooperative catalysis of metal and acid functions in Re-HZSM-5 catalysts for ethane dehydroaromatization. Appl Catal B 243:703–710

    CAS  Google Scholar 

  18. 18.

    Anunziata OA, Eimer GA, Pierella LB (1999) Ethane conversion into aromatic hydrocarbons over molybdenum-containing MEL zeolites. Appl Catal A 182(2):267–274

    CAS  Google Scholar 

  19. 19.

    Ye J, Bai L, Liu B, Tian H, Hu J, Polo-Garzon F, Mayes RT, Wu Z, Fang Y (2019) Fabrication of a pillared ZSM-5 framework for shape selectivity of ethane dehydroaromatization. Ind Eng Chem Res 58(17):7094–7106

    CAS  Google Scholar 

  20. 20.

    Biscardi JA, Meitzner GD, Iglesia E (1998) Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. J Catal 179(1):192–202

    CAS  Google Scholar 

  21. 21.

    Li Z, Lepore AW, Salazar MF, Foo GS, Davison BH, Wu Z, Narula CK (2017) Selective conversion of bio-derived ethanol to renewable BTX over Ga-ZSM-5. Green Chem 19(18):4344–4352

    CAS  Google Scholar 

  22. 22.

    Yu SY, Yu GJ, Li W, Iglesia E (2002) Kinetics and reaction pathways for propane dehydrogenation and aromatization on Co/H-ZSM5 and H-ZSM5. J Phys Chem B 106(18):4714–4720

    CAS  Google Scholar 

  23. 23.

    Paál Z (2002) Dehydrocyclization—heterogeneous. Encyclopedia of catalysis. Wiley, New york

    Google Scholar 

  24. 24.

    Zecevic J, Vanbutsele G, de Jong KP, Martens JA (2015) Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528(7581):245–248

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Liu H, Wang H, Xing A-H, Cheng J-H (2019) Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization. J Phys Chem C 123(25):15637–15647

    CAS  Google Scholar 

  26. 26.

    MÉRiaudeau P, Naccache C (1997) Dehydrocyclization of Alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catal Rev 39(1–2):5–48

    Google Scholar 

  27. 27.

    Biloen P (1983) Transient kinetic methods. J Mol Catal 21(1):17–24

    CAS  Google Scholar 

  28. 28.

    Bennett CO (1999) Experiments and processes in the transient regime for heterogeneous catalysis. Adv Catal 44:329–416

    CAS  Google Scholar 

  29. 29.

    Frennet A, Hubert C (2000) Transient kinetics in heterogeneous catalysis by metals. J Mol Catal A 163(1–2):163–188

    CAS  Google Scholar 

  30. 30.

    Frennet A, Visart de Bocarme T, Bastin JM, Kruse N (2005) Mechanism and kinetics of the catalytic CO-H2 reaction: an approach by chemical transients and surface relaxation spectroscopy. J Phys Chem B 109(6):2350–2359

    CAS  PubMed  Google Scholar 

  31. 31.

    Boudart M, Djega-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton

    Google Scholar 

  32. 32.

    Schuurman Y, Kroll VCH, Ferreira-Aparicio P, Mirodatos C (1997) Use of transient kinetics techniques for studying the methane reforming by carbon dioxide. Catal Today 38(1):129–135

    CAS  Google Scholar 

  33. 33.

    Sadykov VA, Gubanova EL, Sazonova NN, Pokrovskaya SA, Chumakova NA, Mezentseva NV, Bobin AS, Gulyaev RV, Ishchenko AV, Krieger TA, Mirodatos C (2011) Dry reforming of methane over Pt/PrCeZrO catalyst: Kinetic and mechanistic features by transient studies and their modeling. Catal Today 171(1):140–149

    CAS  Google Scholar 

  34. 34.

    Matveev AV, Sadovskaya EM, Bryliakova AA, Gorodetskii VV (2016) Isotopic transient kinetic study of CO oxidation on Pd(1 1 0). J Mol Catal A 420:18–25

    CAS  Google Scholar 

  35. 35.

    Pinaeva LG, Sadovskaya EM, Ivanova YA, Kuznetsova TG, Prosvirin IP, Sadykov VA, Schuurman Y, van Veen AC, Mirodatos C (2014) Water gas shift and partial oxidation of CH4 over CeO2–ZrO2(–La2O3) and Pt/CeO2–ZrO2(–La2O3): performance under transient conditions. Chem Eng J 257:281–291

    CAS  Google Scholar 

  36. 36.

    Kruse N, Bundhoo A, Schweicher J, Frennet A (2009) Chemical transient kinetics applied to CO hydrogenation over a pure nickel catalyst. J Phys Chem C 113(24):10731–10739

    Google Scholar 

  37. 37.

    Schweicher J, Bundhoo A, Kruse N (2012) Hydrocarbon chain lengthening in catalytic CO hydrogenation: evidence for a CO-insertion mechanism. J Am Chem Soc 134(39):16135–16138

    CAS  PubMed  Google Scholar 

  38. 38.

    Melaet G, Ralston WT, Liu W-C, Somorjai GA (2016) Product distribution change in the early stages of carbon monoxide hydrogenation over cobalt magnesium Fischer-Tropsch catalyst. Catal Today 272:69–73

    CAS  Google Scholar 

  39. 39.

    Athariboroujeny M, Raub A, Iablokov V, Chenakin S, kovarik L, Kruse N (2019) Competing mechanisms in CO hydrogenation over Co-MnOx catalysts. ACS Catal 9:5603–5612

    CAS  Google Scholar 

  40. 40.

    Ralston WT, Melaet G, Saephan T, Somorjai GA (2017) Evidence of structure sensitivity in the Fischer-Tropsch reaction on model cobalt nanoparticles by time-resolved chemical transient kinetics. Angew Chem Int Ed 56(26):7415–7419

    CAS  Google Scholar 

  41. 41.

    Schweicher J, Bundhoo A, Frennet A, Kruse N, Daly H, Meunier FdrC (2010) DRIFTS/MS studies during chemical transients and SSITKA of the CO/H2Reaction over Co-MgO catalysts. J Phys Chem C 114(5):2248–2255

    CAS  Google Scholar 

  42. 42.

    Carvalho A, Ordomsky VV, Luo Y, Marinova M, Muniz AR, Marcilio NR, Khodakov AY (2016) Elucidation of deactivation phenomena in cobalt catalyst for Fischer-Tropsch synthesis using SSITKA. J Catal 344:669–679

    CAS  Google Scholar 

  43. 43.

    Frennet A, Lienard G, Crucq A, Degols L (1978) Effect of multiple sites and competition in adsorption on the kinetics of reactions catalyzed by metals. J Catal 53(1):150–163

    CAS  Google Scholar 

  44. 44.

    Sattler A (2018) Hydrogen/Deuterium (H/D) exchange catalysis in alkanes. ACS Catal 8(3):2296–2312

    CAS  Google Scholar 

  45. 45.

    Sattler A, Paccagnini M, Lanci MP, Miseo S, Kliewer CE (2020) Platinum catalyzed C–H activation and the effect of metal–support interactions. ACS Catal 10(1):710–720

    CAS  Google Scholar 

  46. 46.

    Liang T, Toghiani H, Xiang Y (2018) Transient kinetic study of ethane and ethylene aromatization over zinc-exchanged HZSM-5 catalyst. Ind Eng Chem Res 57(45):15301–15309

    CAS  Google Scholar 

  47. 47.

    Liang T, Fadaeerayeni S, Shan J, Li T, Wang H, Cheng J, Toghiani H, Xiang Y (2019) Ethane aromatization over Zn-HZSM-5: early-stage acidity/performance relationships and deactivation kinetics. Ind Eng Chem Res 58(38):17699–17708

    CAS  Google Scholar 

  48. 48.

    Fadaeerayeni S, Shan J, Sarnello E, Xu H, Wang H, Cheng J, Li T, Toghiani H, Xiang Y (2020) Nickel/gallium modified HZSM-5 for ethane aromatization: influence of metal function on reactivity and stability. Appl Catal A 601:117629

    CAS  Google Scholar 

  49. 49.

    Liu X, Liang T, Barbosa R, Chen G, Toghiani H, Xiang Y (2020) Ammoxidation of ethane to acetonitrile and ethylene: reaction transient analysis for the Co/HZSM-5 catalyst. ACS Omega 5(3):1669–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ruthven DM, Post MFM (2001) Chap. 12 Diffusion in zeolite molecular sieves. Stud Surf Sci Catal 137:525–577

    CAS  Google Scholar 

  51. 51.

    Chen G, Liu H, Fadaeerayeni S, Shan J, Xing A, cheng j, Wang H, Xiang Y (2020) Tuning the reactivity of ethylene oligomerization by HZSM-5 framework alf proximity. Catal Sci Technol 10:4019–4029

    CAS  Google Scholar 

  52. 52.

    Kwak BS, Sachtler WMH (1996) Aromatization of propane over Zn/HZSM-5 catalysts prepared by chemical vapor deposition. Korean J Chem Eng 13(4):356–363

    CAS  Google Scholar 

  53. 53.

    Rodrigues VdO, Vasconcellos FJ Jr, Faro Júnior AdC (2016) Mechanistic studies through H–D exchange reactions: propane aromatization in HZSM5 and Ga/HZSM5 catalysts. J Catal 344:252–262

    CAS  Google Scholar 

  54. 54.

    Xiao H, Zhang J, Wang P, Zhang Z, Zhang Q, Xie H, Yang G, Han Y, Tan Y (2015) Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization. RSC Adv 5(112):92222–92233

    CAS  Google Scholar 

  55. 55.

    Giannetto G, Montes A, Gnep NS, Florentino A, Cartraud P, Guisnet M (1994) Conversion of light alkanes into aromatic hydrocarbons.VII. Aromatization of propane on gallosilicates: effect of calcination in dry air. J Catal 145(1):86–95

    CAS  Google Scholar 

  56. 56.

    Lukyanov DB, Gnep NS, Guisnet MR (1994) Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5. Ind Eng Chem Res 33(2):223–234

    CAS  Google Scholar 

Download references

Acknowledgements

Y.X. and S.F. is grateful for the financial support by NICE America Research, Inc. Y.X. is also thankful for the startup support from Mississippi State University. Y.X. would like to dedicate the present paper to Prof. Norbert Kruse for his 70th birthday.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yizhi Xiang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fadaeerayeni, S., Chen, G., Toghiani, H. et al. Mechanism and Kinetics of Ethane Aromatization According to the Chemical Transient Analysis. Top Catal (2020). https://doi.org/10.1007/s11244-020-01303-1

Download citation

Keywords

  • Ethane
  • Aromatization
  • Kinetics and mechanism
  • Transient method
  • Hydrocarbon-pool