Facile Synthesis of Zn Doped g-C3N4 for Enhanced Visible Light Driven Photocatalytic Hydrogen Production

Abstract

The present work reports a facile strategy to develop L-arginine mediated Zn doped graphitic carbon nitride (g-C3N4) and its enhanced photocatalytic activity. The physicochemical properties of Zn-doped g-C3N4 were studied extensively by XPS, UV–Vis, XRD, SEM and BET analysis. The studied properties of the photocatalyst were then correlated with its photocatalytic hydrogen production rates. Zn doping was evidenced by the presence of Zn-N peak from high-resolution core level XPS spectral analysis. Photocatalytic hydrogen evolution experiments revealed that, upon Zn doping, the hydrogen production rate of g-C3N4 was increased from 34.6 to 78.7 µmol/g.h, i.e. 2.3 times more. The enhancement in the photocatalytic properties after Zn doping was addressed by estimating changes in the positions of conduction band minimum and valence band maximum through XPS valence band spectral analysis.

This is a preview of subscription content, log in to check access.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  PubMed  Google Scholar 

  2. 2.

    Gan X, Lei D, Wong K-Y (2018) Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Mater Today Energy 10:352–367

    Google Scholar 

  3. 3.

    Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    CAS  Google Scholar 

  4. 4.

    Xiong Z, Lei Z, Li YZ, Dong LC, Zhao YC, Zhang JY (2018) A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. J Photochem Photobiol C-Photochem Rev 36:24–47

    CAS  Google Scholar 

  5. 5.

    Carey JH, Lawrence J, Tosine HM (1976) Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contaminat Toxicol 16:697–770

    CAS  Google Scholar 

  6. 6.

    J.P. Zou, Y. Chen, M. Zhu, D. Wang, X.-B. Luo, S.-L. Luo. (2019). 2 - Semiconductor-Based Nanocomposites for Photodegradation of Organic Pollutants. In: X. Luo, F. Deng (Eds.). Nanomaterials for the Removal of Pollutants and Resource Reutilization, Elsevier, 25–58

  7. 7.

    Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and application. Renew Sustain Energy Rev 81:536–551

    CAS  Google Scholar 

  8. 8.

    Tan ST, Umar AA, Balouch A, Nafisah S, Yahaya M, Yap CC, Salleh MM, Kityk IV, Oyama M (2014) Ag–ZnO nanoreactor grown on FTO substrate exhibiting high heterogeneous photocatalytic efficiency. ACS Comb Sci 16:314–320

    CAS  PubMed  Google Scholar 

  9. 9.

    Saison T, Chemin N, Chanéac C, Durupthy O, Mariey L, Maugé F, Brezová V, Jolivet J-P (2015) New Insights into BiVO4 properties as visible light photocatalyst. Phys Chem C 119:12967–12977

    CAS  Google Scholar 

  10. 10.

    Martínez-de la Cruz A, García-Pérez UM, Sepúlveda-Guzmán S (2013) Characterization of the visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method. Res Chem Intermed 39:881–894

    Google Scholar 

  11. 11.

    Afif M, Sulaeman U, Riapanitra A, Andreas R, Yin S (2019) Use of Mn doping to suppress defect sites in Ag3PO4: Applications in photocatalysis. Appl Surf Sci 466:352–357

    CAS  Google Scholar 

  12. 12.

    Guan X, Shi J, Guo L (2013) Ag3PO4 photocatalyst: hydrothermal preparation and enhanced O2 evolution under visible-light irradiation. Int J Hydrogen Energy 38:11870–11877

    CAS  Google Scholar 

  13. 13.

    Zhang F, Zhuang H-Q, Zhang W, Yin J, Cao F-H, Pan Y-X (2019) Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water. Catal Today 330:203–208

    CAS  Google Scholar 

  14. 14.

    Li X, Yu J, Low J, Fang Y, Xiao J (2015) Engineering heterogeneous semiconductors for solar water splitting”. J Mater Chem A 3:2485–2534

    CAS  Google Scholar 

  15. 15.

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76

    PubMed  Google Scholar 

  16. 16.

    Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681

    CAS  PubMed  Google Scholar 

  17. 17.

    Zhu B, Zhang L, Cheng B, Jiaguo Y (2018) First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl Catal B: Environ 224:983–999

    CAS  Google Scholar 

  18. 18.

    Wei S, Wang F, Yan P, Dan M, Cen W, Yua S, Zhou Y (2019) Interfacial coupling promoting hydrogen sulfide splitting on the staggered type II g-C3N4/r-TiO2 heterojunction. J Cataly 377:122–132

    CAS  Google Scholar 

  19. 19.

    Alcudia-Ramos MA, Fuentez-Torres MO, Ortiz-Chi F, Espinosa-González CG, Hernández-Como N, García-Zaleta DS, Kesarla MK, Torres-Torres JG, Collins-Martínez V, Godavarthi S (2020) Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production. Ceram Int 46:38–45

    CAS  Google Scholar 

  20. 20.

    Tang J, Zhou W, Guo R, Huang C, Pan W, Liu P (2019) An exploration on in-situ synthesis of europium doped g-C3N4 for photocatalytic water splitting. Energy Procedia 158:1553–1558

    CAS  Google Scholar 

  21. 21.

    Feng H, Guo Q, Yingfeng X, Chen T, Zhou Y, Wang Y, Wang M, Shen D (2018) Surface nonpolarization of g-C3N4 by decoration with sensitized quantum dots for improved CO2 photoreduction. Chemsuschem 11:4256–4261

    CAS  PubMed  Google Scholar 

  22. 22.

    Ruan D, Kim S, Fujitsuka M, Majima T (2018) Defects rich g-C3N4 with mesoporous structure for efficient photocatalytic H2 production under visible light irradiation. Appl Catal B 238:638–646

    CAS  Google Scholar 

  23. 23.

    Zhu YP, Ren T-Z, Yuan Z-Y (2015) Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl Mater Interfaces 7:16850–16856

    CAS  PubMed  Google Scholar 

  24. 24.

    Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, Fu H (2016) Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew Chem Int Ed 55:1830–1834

    CAS  Google Scholar 

  25. 25.

    Zhou Y, Zhang L, Huang W, Kong Q, Fan X, Wang M, Shi J (2016) N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99:111–117

    CAS  Google Scholar 

  26. 26.

    Wang JC, Cui CX, Kong Q-Q, Ren C-Y, Li Z, Qu L, Zhang Y, Jiang K (2018) Mn-doped g-C3N4 nanoribbon for efficient visible-light photocatalytic water splitting coupling with methylene blue degradation. ACS Sustain Chem Eng 6:8754–8761

    CAS  Google Scholar 

  27. 27.

    Gao J, Wang Y, Zhou S, Lin W, Kong Y (2017) A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9:1708–1715

    CAS  Google Scholar 

  28. 28.

    Wang Z-T, Jun-Li X, Zhou H, Zhang X (2019) Facile synthesis of Zn(II)-doped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation. Rare Met. 38:459–467

    CAS  Google Scholar 

  29. 29.

    Yue B, Li Q, Iwai H, Kako T, Ye J (2011) Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci Technol Adv Mater 12:034401

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    CAS  PubMed  Google Scholar 

  31. 31.

    Shi Y, Songyan L, Ma B, Ma M, He H, Chen S, Wang X (2019) A “one stop” thermal stabilizer, zinc arginine complex, with excellent comprehensive thermal stability effect on poly(vinyl chloride. Polymer Degradat Stabil 167:58–66

    CAS  Google Scholar 

  32. 32.

    Ghadari R, Namazi H, Aghazadeh M (2018) Synthesis of graphene oxide supported copper-cobalt ferrite material functionalized by arginine amino acid as a new high-performance catalyst. Appl Organomet Chem 32(3965):1–10

    Google Scholar 

  33. 33.

    Futsuhara M, Yoshioka K, Takai O (1998) Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322:274–281

    CAS  Google Scholar 

  34. 34.

    Iqbal M, Ali A, Nahyoon NA, Majeed A, Pothu R, Phulpoto S, Thebo KH (2019) Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Mater Sci Energy Technol 2:41–45

    Google Scholar 

  35. 35.

    Martha S, Nashim A, Parida KM. (2013). Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J Mater Chem A, 7816–7824

  36. 36.

    Ming Wu, Yan J-M, Zhang X-W, Zhao M (2015) Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution. Appl Surface Sci 354:196–200

    Google Scholar 

  37. 37.

    Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J Mater Chem A 2:18924–18928

    CAS  Google Scholar 

  38. 38.

    Zhu B, Xia P, Ho YLW, Jiaguo Y (2017) Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl Surface Sci 391:175–183

    CAS  Google Scholar 

  39. 39.

    Dong F, Sun Y, Wu L, Fu M, Wu Z (2012) Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal Sci Technol 2:1332–1335

    CAS  Google Scholar 

  40. 40.

    Thorat N, Yadav A, Yadav M, Gupta S, Varma R, Pillai S, Fernandes R, Patel M, Patel N (2019) Ag loaded B-doped-g C3N4 nanosheet with efficient properties for photocatalysis. J Environ Manage 247:57–66

    CAS  PubMed  Google Scholar 

  41. 41.

    Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X (2010) Excellent visible-light photocatalysis of fluorinatedpolymeric carbon nitride solids. Chem Mater 22:5119–5121

    CAS  Google Scholar 

  42. 42.

    Wang H, Zhang X, Xie J, Zhang J, Ma P, Pan B, Xie Y (2015) Structural distortion in graphitic-C3N4 realizing anefficient photoreactivity. Nanoscale 7:5152–5156

    CAS  PubMed  Google Scholar 

  43. 43.

    Zhou X, Li Y, Xing Y, Li J, Jiang X (2019) Effects of the preparation method of Pt/g-C3N4 photocatalysts on efficiency for visible-light hydrogen production. Dalton Trans 48:15068–15073

    CAS  PubMed  Google Scholar 

  44. 44.

    Xie L, Ai Z, Zhang M, Sun R, Zhao W (2016) Enhanced Hydrogen Evolution In The Presence Of Plasmonic Au-photo-sensitized g-C3N4 with an extended absorption spectrum from 460 to 640 nm. PLoS ONE 11(8):e0161397

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Gao J, Wang Y, Zhou S, Lin W, Kong Y (2017) A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible light photocatalytic performances. ChemCatChem 9:1708–1715

    CAS  Google Scholar 

  46. 46.

    Dong G, Zhao K, Zhang L (2012) Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Commun 48:6178–6180

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank “Dra. Maura Casales Diaz” and “Jose Juan Ramos-Hernandez” from ICF, UNAM and “Miguel Jesús Melendez Zaragoza” from CIMAV for their support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. K. Kesarla or S. Godavarthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10015 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuentez-Torres, M.O., Ortiz-Chi, F., Espinosa-González, C.G. et al. Facile Synthesis of Zn Doped g-C3N4 for Enhanced Visible Light Driven Photocatalytic Hydrogen Production. Top Catal (2020). https://doi.org/10.1007/s11244-020-01298-9

Download citation

Keywords

  • Graphitic carbon nitride
  • Photocatalysis
  • Hydrogen production
  • Zn doping
  • L-arginine