Effects of Ce Doping on the Photocatalytic and Electrochemical Performance of Nickel Hydroxide Nanostructures

Abstract

Ni(OH)2 doped with cerium cations was synthesized by a hydrothermal method and its electrochemical, photoelectrochemical and photocatalytic behavior was determined by the corresponding suitable techniques. Ni(OH)2 films doped with different Ce proportions were evaluated in a KOH support electrolyte solution by cyclic voltammetry. Scan-rate dependent voltammograms displayed pseudo-capacitive behavior while the charge transfer resistance of Ce-doped samples was determined through electrochemical impedance spectroscopy. The calculated charge transfer resistance value was 132 Ω for Ni(OH)2 containing 350 μmoles of Ce. Chronoamperometry under intermittent UV light was employed to measure the photo-response of nanomaterials. The experimental results indicated that the photocurrent of Ni(OH)2 containing 350 µmoles of Ce was ten times greater than that of pure Ni(OH)2. Photocatalytic activity of the powders was demonstrated under UV light irradiation accomplishing 83% of methyl orange degradation after 140 min of reaction with pseudo-first-order kinetics and the calculated degradation rate constant was 0.0125 min− 1. The results evidenced the electrochemical, photoelectrochemical and photocatalytic activity of the synthesized materials, which sets them as suitable materials for a wide range of promising photo-based applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Chou S, Wang J, Chew SY, Liu HK, Dou SX (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727

    CAS  Article  Google Scholar 

  2. 2.

    Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842. https://doi.org/10.1021/nn101754k

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695. https://doi.org/10.1021/nl061576a

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Echresh A, Chey CO, Zargar Shoushtari M, Khranovskyy V, Nur O, Willander M (2015) UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J Alloys Compd 632:165–171. https://doi.org/10.1016/j.jallcom.2015.01.155

    CAS  Article  Google Scholar 

  5. 5.

    Sun W, Xiao L, Wu X (2019) Facile synthesis of NiO nanocubes for photocatalysts and supercapacitor electrodes. J Alloys Compd 772:465–471. https://doi.org/10.1016/j.jallcom.2018.09.185

    CAS  Article  Google Scholar 

  6. 6.

    Chou S, Wang J, Liu HK, Dou SX (2008) Electrochemical deposition of porous Co(OH)2 nanoflake films on stainless steel mesh for flexible supercapacitors. J Electrochem Soc 155:A926–A929

    CAS  Article  Google Scholar 

  7. 7.

    Motahari F, Mozdianfard MR, Soofivand F, Salavati-Niasari M (2014) NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv 4:27654–27660. https://doi.org/10.1039/c4ra02697g

    CAS  Article  Google Scholar 

  8. 8.

    Zhang X, Gu A, Wang G, Fang B, Yan Q, Zhu J, Sun T, Ma J, Hoon Hng H (2011) Enhanced electrochemical catalytic activity of new nickel hydroxide nanostructures with (100) facet. CrystEngComm 13:188–192. https://doi.org/10.1039/c003791p

  9. 9.

    Wang X, Luo H, Parkhutik PV, Millan AC, Matveeva E (2003) Studies of the performance of nanostructural multiphase nickel hydroxide. J Power Sources 115:153–160

    Article  Google Scholar 

  10. 10.

    Akinc M, Jongen N, Lemaitre J, Hofmann H (1998) Synthesis of nickel hydroxide powders by urea decomposition. J Eur Ceram Soc 18:1559–1564

    Article  Google Scholar 

  11. 11.

    Jayalakshmi M, Radhika P, Phani Raja K, Mohan Rao M (2007) Solvent and thiourea adsorption/intercalation effects on the solid-state electrochemistry of a-phase nickel hydroxide nanoparticles. J Solid State Electrochem 11:165–172. https://doi.org/10.1007/s10008-005-0081-z

    CAS  Article  Google Scholar 

  12. 12.

    Srinivasan V, Weidner JW (1997) An electrochemical route for making porous nickel oxide electrochemical capacitors. J Electrochem Soc 144:L210–L213

    CAS  Article  Google Scholar 

  13. 13.

    Li M, Xu S, Zhu Y, Yang P, Wang L, Chu PK (2014) Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. J Alloys Compd 589:364–371. https://doi.org/10.1016/j.jallcom.2013.11.230

    CAS  Article  Google Scholar 

  14. 14.

    Zhang Y, Zhao Y, An W, Xing L, Gao Y, Liu J (2017) Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J Mater Chem A 5:10039–10047. https://doi.org/10.1039/c7ta00963a

    CAS  Article  Google Scholar 

  15. 15.

    Adekunle AS, Oyekunle JAO, Oluwafemi OS, Joshua AO, Makinde WO, Ogunfowokan AO, Eleruja MA, Ebenso EE (2014) Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2) and nitric oxide (NO). Int J Electrochem Sci 9:3008–3021

    Google Scholar 

  16. 16.

    Cai X, Cai Y, Liu Y, Deng S, Wang Y, Wang Y, Djerdj I (2014) Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. Ceram Int 40:57–65. https://doi.org/10.1016/j.ceramint.2013.05.103

    CAS  Article  Google Scholar 

  17. 17.

    Wang YM, Zhao DD, Zhao YQ, Xu CL, Li HL (2012) Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode. RSC Adv 2:1074–1082. https://doi.org/10.1039/c1ra00613d

    CAS  Article  Google Scholar 

  18. 18.

    Mao Y, Yang H, Chen J, Chen J, Tong Y, Wang X (2014) Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy 6:10–18. https://doi.org/10.1016/j.nanoen.2014.02.008

    CAS  Article  Google Scholar 

  19. 19.

    Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide doped titanium dioxide photocatalysts: effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid. J Catal 204:305–313

    CAS  Article  Google Scholar 

  20. 20.

    Fu C, Li T, Qi J, Pan J, Chen S, Cheng C (2010) Theoretical study on the electronic and optical properties of Ce3+-doped TiO2 photocatalysts. Chem Phys Lett 494:117–122. https://doi.org/10.1016/j.cplett.2010.05.085

    CAS  Article  Google Scholar 

  21. 21.

    Muthukumaran P, Chikkili VR, Sumathi C, Slairaj D, Rameshthangam P, Wilson J, Sathish R, Subbiah A (2016) Cerium doped nickel-oxide nanostructures for riboflavin biosensing and antibacterial applications. New J Chem 40:2741–2748. https://doi.org/10.1039/c5nj03539b

  22. 22.

    Liu C, Tang X, Mo C, Qiang Z (2008) Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium. J Solid State Chem 181:913–919. https://doi.org/10.1016/j.jssc.2008.01.031

    CAS  Article  Google Scholar 

  23. 23.

    Regmi C, Maya-Flores E, Lee SW, Rodríguez-González V (2018) Cerium-doped β-Ni(OH)2 hexagon nanosheets: an effective photocatalyst for the degradation of the emerging water pollutant, naproxen. Nanotechnology 29:375603. https://doi.org/10.1088/1361-6528/aace14

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Iyyappa Rajan P, Judith Vijaya J, Jesudoss SK, Kaviyarasu K, John Kennedy L, Jothiramalingam R, Al-Lohedan HA, Vaali-Mohammed MA (2017) Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains. Mater Res Express 4:08503

  25. 25.

    Sonavane AC, Inamdar AI, Shinde PS, Deshmukh HP, Patil RS, Patil PS (2010) Efficient electrochromic nickel oxide thin films by electrodeposition. J Alloys Compd 489:667–673. https://doi.org/10.1016/j.jallcom.2009.09.146

    CAS  Article  Google Scholar 

  26. 26.

    Abd AN, Ali RS, Hussein AA (2016) Fabrication and characterization of nickel heterojunction oxide nanoparticles/silicon. J Multidiscip Eng Sci Stud 2:434–440

    Google Scholar 

  27. 27.

    Mohammad Shiria H, Aghazadeh M (2012) Synthesis, characterization and electrochemical properties of capsule-like NiO nanoparticles. J Electrochem Soc 159:E132–E138

  28. 28.

    Sabouri Z, Akbari A, Hosseini HA, Darroudi M (2018) Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J Mol Struct 1173:931–936

    CAS  Article  Google Scholar 

  29. 29.

    Rodríguez-González V, Marceau E, Che M, Pepe C (2007) Influence of the morphology and impurities of Ni(OH)2 on the synthesis of neutral Ni(II)–amino acid complexes. J Solid State Chem 180:3469–3478

    Article  Google Scholar 

  30. 30.

    Oliver-Tolentino MA, Vázquez-Samperio J, Manzo-Robledo A, González-Huerta RG, Flores-Moreno JL, Ramírez-Rosales D, Guzmán-Vargas A (2014) An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni-Fe LDH. J Phys Chem C 118:22432–22438. https://doi.org/10.1021/jp506946b

    CAS  Article  Google Scholar 

  31. 31.

    Choudhury B, Borah B, Choudhury A (2012) Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium. Photochem Photobiol 88:257–264. https://doi.org/10.1111/j.1751-1097.2011.01064.x

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Jiang Y, Chen D, Song J, Jiao Z, Ma Q, Zhang H, Cheng L, Zhao B, Chu Y (2013) A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochim Acta 91:173–178

    CAS  Article  Google Scholar 

  33. 33.

    Zhu Z, Ping J, Huang X, Hu J, Chen Q, Ji X, Banks CE (2012) Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. J Mater Sci 47:503–507. https://doi.org/10.1007/s10853-011-5826-8

    CAS  Article  Google Scholar 

  34. 34.

    Wang J (2006) Analytical electrochemisitry: controlled-potential techniques, 3rd edn. Wiley, Hoboken

    Google Scholar 

  35. 35.

    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868. https://doi.org/10.1021/nl102661q

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Zheng X, Duan S, Liu S, Wei M, Xia F, Tian D, Zhou C (2015) Sensitive and simultaneous method for the determination of naphthol isomers by an amino-functionalized, SBA-15-modified carbon paste electrode. Anal Methods 7:3063–3071. https://doi.org/10.1039/c5ay00027k

    CAS  Article  Google Scholar 

  37. 37.

    Tian H, Wan C, Zheng W, Hu X, Qiao L, Wang X (2016) Construction of a ternary hybrid of CdS nanoparticles loaded on mesoporous-TiO2/RGO for the enhancement of photocatalytic activity. RSC Adv 6:84722–84729. https://doi.org/10.1039/c6ra16094h

    CAS  Article  Google Scholar 

  38. 38.

    Liu S, Xu YJ (2016) Photo-induced transformation process at gold clusters-semiconductor interface: implications for the complexity of gold clusters-based photocatalysis. Sci Rep 6:1–13. https://doi.org/10.1038/srep22742

    CAS  Article  Google Scholar 

  39. 39.

    Long M, Jiang J, Li Y, Cao R, Zhang L, Cai W (2011) Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of au modified BiVO4. Nano-Micro Lett 3:171–177. https://doi.org/10.3786/nml.v3i3.p171-177

    CAS  Article  Google Scholar 

  40. 40.

    Rebello A, Adeyeye AO (2016) Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures. Sci Rep 6:1–8. https://doi.org/10.1038/srep28007

    CAS  Article  Google Scholar 

  41. 41.

    Luo Y, Qiao L, Zhang Q, Xu H, Shen Y, Lin Y, Nan C (2018) Tunable photoelectric response in NiO-based heterostructures by various orientations. Appl Phys Lett 112:093301

    Article  Google Scholar 

  42. 42.

    Lv H, Wang C, Li G, Burke R, Krauss TD, Gao Y, Eisenberg R (2017) Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. PNAS 114:11297–11302

    CAS  Article  Google Scholar 

  43. 43.

    Ramasamy P, Kwak D, Lim DH, Ra HS, Lee JS (2016) Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors. J Mater Chem C 4:479–485. https://doi.org/10.1039/c5tc03667d

    CAS  Article  Google Scholar 

  44. 44.

    Yan J, Gu J, Wang X, Fan Y, Zhao Y, Lian J, Xu Y, Song Y, Xu H, Li H (2017) Design of 3D WO3/h-BN nanocomposites for efficient visible-light-driven photocatalysis. RSC Adv 7:25160–25170. https://doi.org/10.1039/c7ra02929b

    CAS  Article  Google Scholar 

  45. 45.

    Fang W, Zhou Y, Dong C, Xiang M, Zhang J (2016) Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catal Today 266:188–196

    CAS  Article  Google Scholar 

  46. 46.

    Jiang Z, Wan W, Wei W, Chen K, Li H, Wong PK, Xie J (2017) Gentle way to build reduced titanium dioxide nanodots integrated with graphite-like carbon spheres: From DFT calculation to experimental measurement. Appl Catal B Environ 204:283–295

  47. 47.

    Tian H, Teng F, Xu J, Lou S, Li N, Zhao Y, Chen M (2015) An innovative anion regulation strategy for energy bands of semiconductors: a case from bi 2 o 3 to bi 2 O(OH) 2 so 4. Sci Rep 5:1–9. https://doi.org/10.1038/srep07770

    CAS  Article  Google Scholar 

  48. 48.

    Kadam LD, Patil PS (2001) Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique. Sol Energy Mater Sol Cells 69:361–369

    CAS  Article  Google Scholar 

  49. 49.

    Maciak E, Opilski Z (2007) Transition metal oxides covered Pd film for optical H2 gas detection. Thin Solid Films 515:8351–8355. https://doi.org/10.1016/j.tsf.2007.03.022

    CAS  Article  Google Scholar 

  50. 50.

    He J, Lindström H, Hagfeldt A, Lindquist SE (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103:8940–8943. https://doi.org/10.1021/jp991681r

    CAS  Article  Google Scholar 

  51. 51.

    Fu X, Huang D, Qin Y, Li L, Jiang X, Chen S (2014) Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6. Appl Catal B Environ 148–149:532–542

    Article  Google Scholar 

  52. 52.

    Wang J, Li H, Meng S, Zhang L, Fu X, Chen S (2017) One-pot hydrothermal synthesis of highly efficient SnOx/Zn2SnO4 composite photocatalyst for the degradation of methyl orange and gaseous benzene. Appl Catal B Environ 200:19–30

    CAS  Article  Google Scholar 

  53. 53.

    Znad H, Abbas K, Hena S, Awual MR (2018) Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng 6:218–227. https://doi.org/10.1016/j.jece.2017.11.077

    CAS  Article  Google Scholar 

  54. 54.

    Nguyen CH, Fu CC, Juang RS (2018) Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod 202:413–427. https://doi.org/10.1016/j.jclepro.2018.08.110

    CAS  Article  Google Scholar 

  55. 55.

    Saien J, Mesgari Z (2017) Photocatalytic degradation of methyl orange using hematoporphyrin/N-doped TiO2 nanohybrids under visible light: Kinetics and energy consumption. Appl Organomet Chem 31:1–11. https://doi.org/10.1002/aoc.3755

    CAS  Article  Google Scholar 

  56. 56.

    Lv T, Pan L, Liu X, Sun Z (2012) Visible-light photocatalytic degradation of methyl orange by CdS-TiO2-Au composites synthesized via microwave-assisted reaction. Electrochim Acta 83:216–220. https://doi.org/10.1016/j.electacta.2012.08.018

    CAS  Article  Google Scholar 

  57. 57.

    Gupta VK, Saravanan R, Agarwal S, Gracia F, Khan MM, Qin J, Mangalaraja RV (2017) Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J Mol Liq 232:423–430. https://doi.org/10.1016/j.molliq.2017.02.095

    CAS  Article  Google Scholar 

  58. 58.

    Ökte AN, Yilmaz Ö (2008) Photodecolorization of methyl orange by yttrium incorporated TiO2 supported ZSM-5. Appl Catal B Environ 85:92–102

    Article  Google Scholar 

  59. 59.

    Arabi M, Baizaee SM, Bahador A, Otaqsara SMT (2018) Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange. Luminescence 33:475–485. https://doi.org/10.1002/bio.3436

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

C. Martínez-Sánchez appreciates the Postdoctoral scholarship granted by CONACYT. We gratefully acknowledge G. Labrada-Delgado and H. Silva-Pereyra from LINAN-IPICYT for the FESEM and TEM characterizations. V. Rodríguez-González is grateful to KOFTS for the Brain Pool Program No. 152S-2-31424. This research was partially supported by the National Research of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Rodríguez-González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Sánchez, C., Regmi, C., Lee, S.W. et al. Effects of Ce Doping on the Photocatalytic and Electrochemical Performance of Nickel Hydroxide Nanostructures. Top Catal (2020). https://doi.org/10.1007/s11244-020-01295-y

Download citation

Keywords

  • Ni(OH)2-Ce
  • Electrochemical properties
  • Photoresponse
  • Photocatalytic
  • UV-light