Black Sand-Based Photocatalyst for Hydrogen Production from EDTA Solutions Under UV–Vis Irradiation

Abstract

Black sand from coastal deposits composed by a mixture containing oxides (Fe2O3, TiO2, SiO2, ZrO2, MnO, Al2O3, etc.) and metals (V, Cr, Ni, Sr, Ce, etc.). Both this mineral, as well as a fraction obtained from it, have been used as a photocatalyst for hydrogen production from EDTA (electron donor agent) solutions under UV/Vis irradiation. The physical, chemical and optical properties of materials were studied by X-ray fluorescence, scanning electron microscopy/energy-dispersive X-Ray analysis, BET area, thermal gravimetric analysis, X-ray diffraction patterns, Fourier transform infrared and UV–Vis spectroscopy techniques. The effect of several variables, such as chemical composition (Fe/Ti atomic ratio), catalyst dosage, initial pH of suspension, and sacrificial agent (EDTA) concentration on photocatalytic hydrogen production using these minerals were evaluated. The hydrogen production rate was favored by the high content of iron and low initial pH. Catalyst dosage and sacrificial agent concentration show a synergistic effect due to free radicals generated by the photocatalytic mechanism and the turbidity of the suspension (optical depth). In acidic conditions, M1 fraction produced 35,459.78 µmol g−1 (0.5 g l−1 catalyst and 10 mM EDTA), while lowest hydrogen production (350.294 µmol g−1) was obtained using the same sacrificial agent concentration but employing 0.1 g l−1 of M1 at natural pH suspension (pH 4.8). The results are promising since the hydrogen levels produced by this natural ore are close to yields obtained under similar conditions, using synthetized semiconductors. It’s highlight, that in this study a natural catalyst (principle of the geocatalysis), that not was substantially modified.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Valdes A, Brillet J, Gratzel M et al (2012) Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Phys Chem Chem Phys 14:49–70. https://doi.org/10.1039/C1CP23212F

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bayrakci M, Choi Y, Brownson JRS (2014) Temperature dependent power modeling of photovoltaics. Energy Procedia 57:745–754. https://doi.org/10.1016/j.egypro.2014.10.282

    Article  Google Scholar 

  3. 3.

    Ziapour BM, Palideh V, Mohammadnia A (2014) Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells. Energy Convers Manag 86:587–594. https://doi.org/10.1016/j.enconman.2014.06.019

    Article  Google Scholar 

  4. 4.

    Goss B, Cole I, Betts T, Gottschalg R (2014) Irradiance modelling for individual cells of shaded solar photovoltaic arrays. Sol Energy 110:410–419. https://doi.org/10.1016/j.solener.2014.09.037

    Article  Google Scholar 

  5. 5.

    Makki A, Omer S, Sabir H (2015) Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sustain Energy Rev 41:658–684. https://doi.org/10.1016/j.rser.2014.08.069

    CAS  Article  Google Scholar 

  6. 6.

    Mokheimer EMA, Dabwan YN, Habib MA et al (2015) Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia. Appl Energy 141:131–142. https://doi.org/10.1016/j.apenergy.2014.12.027

    CAS  Article  Google Scholar 

  7. 7.

    Safaei A, Freire F, Antunes CH (2013) A model for optimal energy planning of a commercial building integrating solar and cogeneration systems. Energy 61:211–223. https://doi.org/10.1016/j.energy.2013.08.048

    Article  Google Scholar 

  8. 8.

    Buoro D, Pinamonti P, Reini M (2014) Optimization of a distributed cogeneration system with solar district heating. Appl Energy 124:298–308. https://doi.org/10.1016/j.apenergy.2014.02.062

    Article  Google Scholar 

  9. 9.

    Grima-Olmedo C, Ramírez-Gómez Á, Alcalde-Cartagena R (2014) Energetic performance of landfill and digester biogas in a domestic cooker. Appl Energy 134:301–308. https://doi.org/10.1016/j.apenergy.2014.08.032

    Article  Google Scholar 

  10. 10.

    Morin P, Marcos B, Moresoli C, Laflamme CB (2010) Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada. Appl Energy 87:275–283. https://doi.org/10.1016/j.apenergy.2009.07.007

    CAS  Article  Google Scholar 

  11. 11.

    Rodríguez J, Cañadas I, Zarza E (2014) PSA vertical axis solar furnace SF5. Energy Procedia 49:1511–1522. https://doi.org/10.1016/j.egypro.2014.03.160

    Article  Google Scholar 

  12. 12.

    Perez-Enciso R, Riveros-Rosas D, Sanchez M et al (2014) Three-dimensional analysis of solar radiation distribution at the focal zone of the solar furnace of IER_UNAM. Energy Procedia 57:3031–3040. https://doi.org/10.1016/j.egypro.2014.10.339

    Article  Google Scholar 

  13. 13.

    Calise F, Dentice d’Accadia M, Piacentino A (2014) A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: dynamic simulation and economic assessment. Energy 67:129–148. https://doi.org/10.1016/j.energy.2013.12.060

    CAS  Article  Google Scholar 

  14. 14.

    Zhang M, Zhou D, Zhou P (2014) A real option model for renewable energy policy evaluation with application to solar PV power generation in China. Renew Sustain Energy Rev 40:944–955. https://doi.org/10.1016/j.rser.2014.08.021

    Article  Google Scholar 

  15. 15.

    Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553. https://doi.org/10.1016/j.apenergy.2012.11.051

    CAS  Article  Google Scholar 

  16. 16.

    Zhang L, Zheng H, Wu Y (2003) Experimental study on a horizontal tube falling film evaporation and closed circulation solar desalination system. Renew Energy 28:1187–1199. https://doi.org/10.1016/S0960-1481(02)00213-6

    CAS  Article  Google Scholar 

  17. 17.

    Kasaeian A, Eshghi AT, Sameti M (2015) A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy Rev 43:584–598. https://doi.org/10.1016/j.rser.2014.11.020

    CAS  Article  Google Scholar 

  18. 18.

    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Article  Google Scholar 

  19. 19.

    Sharma A, Lee B-K (2017) Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber. Catal Today 298:158–167. https://doi.org/10.1016/j.cattod.2017.05.003

    CAS  Article  Google Scholar 

  20. 20.

    Sharma A, Lee B-K (2016) Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J Environ Manag 181:563–573. https://doi.org/10.1016/j.jenvman.2016.07.016

    CAS  Article  Google Scholar 

  21. 21.

    Sharma A, Erdenedelger G, Mo Jeong H, Lee B-K (2020) Controlled oxygen functional groups on reduced graphene using rate of temperature for advanced sorption process. J Environ Chem Eng 8:103749. https://doi.org/10.1016/j.jece.2020.103749

    CAS  Article  Google Scholar 

  22. 22.

    Li R, Li C (2017) Chapter one - photocatalytic water splitting on semiconductor-based photocatalysts. In: Song C (ed). Academic Press, pp 1–57

  23. 23.

    Martyanov IN, Uma S, Rodrigues S, Klabunde KJ (2004) Structural defects cause TiO2-based photocatalysts to be active in visible light. Chem Commun. https://doi.org/10.1039/B409730K

    Article  Google Scholar 

  24. 24.

    Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516. https://doi.org/10.1016/S0021-9517(02)00104-5

    CAS  Article  Google Scholar 

  25. 25.

    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009

    CAS  Article  Google Scholar 

  26. 26.

    Kudo A (2007) Photocatalysis and solar hydrogen production. Pure Appl Chem 79:1917–1927. https://doi.org/10.1351/pac200779111917

    CAS  Article  Google Scholar 

  27. 27.

    Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94–102. https://doi.org/10.1016/j.cattod.2007.03.028

    CAS  Article  Google Scholar 

  28. 28.

    Li W, Tian Y, Zhao C et al (2016) Synthesis of magnetically separable Fe3O4@PANI/TiO2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation. Chem Eng J 303:282–291. https://doi.org/10.1016/j.cej.2016.06.022

    CAS  Article  Google Scholar 

  29. 29.

    Mansilla HD, Bravo C, Ferreyra R et al (2006) Photocatalytic EDTA degradation on suspended and immobilized TiO2. J Photochem Photobiol A 181:188–194. https://doi.org/10.1016/j.jphotochem.2005.11.023

    CAS  Article  Google Scholar 

  30. 30.

    Babay PA, Emilio CA, Ferreyra RE et al (2001) Kinetics and mechanisms of EDTA photocatalytic degradation with TiO2. Water Sci Technol 44:179–185

    CAS  Article  Google Scholar 

  31. 31.

    Su E-C, Huang B-S, Wey M-Y (2016) Sustainable hydrogen production from electroplating wastewater over a solar light responsive photocatalyst. RSC Adv 6:71273–71281. https://doi.org/10.1039/C6RA15523E

    CAS  Article  Google Scholar 

  32. 32.

    Mangrulkar PA, Joshi MV, Kamble SP et al (2010) Hydrogen evolution by a low cost photocatalyst: Bauxite residue. Int J Hydrogen Energy 35:10859–10866. https://doi.org/10.1016/j.ijhydene.2009.10.075

    CAS  Article  Google Scholar 

  33. 33.

    López-Vásquez A, Suárez-Escobar A, Ramírez JH (2020) Effect of calcination temperature on the photocatalytic activity of nanostructures synthesized by hydrothermal method from black mineral sand. ChemistrySelect 5:252–259. https://doi.org/10.1002/slct.201903560

    CAS  Article  Google Scholar 

  34. 34.

    Schoonen MAA, Xu Y, Strongin DR (1998) An introduction to geocatalysis. J Geochem Explor 62:201–215. https://doi.org/10.1016/S0375-6742(97)00069-1

    CAS  Article  Google Scholar 

  35. 35.

    Liu Y, Qi T, Chu J et al (2006) Decomposition of ilmenite by concentrated KOH solution under atmospheric pressure. Int J Miner Process 81:79–84. https://doi.org/10.1016/j.minpro.2006.07.003

    CAS  Article  Google Scholar 

  36. 36.

    Chen G, Chen J, Guo S et al (2012) Dissociation behavior and structural of ilmenite ore by microwave irradiation. Appl Surf Sci 258:4826–4829. https://doi.org/10.1016/j.apsusc.2011.12.121

    CAS  Article  Google Scholar 

  37. 37.

    Nayl AA, Aly HF (2009) Acid leaching of ilmenite decomposed by KOH. Hydrometallurgy 97:86–93. https://doi.org/10.1016/j.hydromet.2009.01.011

    CAS  Article  Google Scholar 

  38. 38.

    Nayl AA, Awwad NS, Aly HF (2009) Kinetics of acid leaching of ilmenite decomposed by KOH: Part 2. Leaching by H2SO4 and C2H2O4. J Hazard Mater 168:793–799. https://doi.org/10.1016/j.jhazmat.2009.02.076

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Li C, Liang B (2008) Study on the mechanochemical oxidation of ilmenite. J Alloys Compd 459:354–361. https://doi.org/10.1016/j.jallcom.2007.04.270

    CAS  Article  Google Scholar 

  40. 40.

    Sarker MK, Rashid AKMB, Kurny ASW (2006) Kinetics of leaching of oxidized and reduced ilmenite in dilute hydrochloric acid solutions. Int J Miner Process 80:223–228. https://doi.org/10.1016/j.minpro.2006.04.005

    CAS  Article  Google Scholar 

  41. 41.

    Tan P, Hu H, Zhang L (2011) Effects of mechanical activation and oxidation-reduction on hydrochloric acid leaching of Panxi ilmenite concentration. Trans Nonferrous Met Soc China 21:1414–1421. https://doi.org/10.1016/S1003-6326(11)60875-3

    CAS  Article  Google Scholar 

  42. 42.

    Peng L, Xie T, Lu Y et al (2010) Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys Chem Chem Phys 12:8033–8041. https://doi.org/10.1039/C002460K

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Moniz SJA, Shevlin SA, An X et al (2014) Fe2O3–TiO2 nanocomposites for enhanced charge separation and photocatalytic activity. Chem J 20:15571–15579. https://doi.org/10.1002/chem.201403489

    CAS  Article  Google Scholar 

  44. 44.

    Reyes, G & López A (2015) Producción Fotocatalitica De Hidrógeno Basada En El Mineral Arena Negra Como Semiconductor. Universidad Libre sede Principal

  45. 45.

    López-Vásquez A, Colina JA, Machuca-Martínez F (2020) Experimental dataset on preparation and characterization of black sand mineral-based as photocatalyst. Data Br. https://doi.org/10.1016/j.dib.2020.105373

    Article  Google Scholar 

  46. 46.

    McElhinny MW, McFadden PLBT-IG (2000) Chapter two—rock magnetism. In: Paleomagnetism. Academic Press, pp 31–77

  47. 47.

    Filippidis A, Misaelides P, Clouvas A et al (1997) Mineral, chemical and radiological investigation of a black sand at Touzla Cape, near Thessaloniki, Greece. Environ Geochem Health 19:83–88. https://doi.org/10.1023/A:1018498404922

    CAS  Article  Google Scholar 

  48. 48.

    Alkaim AF, Kandiel TA, Hussein FH et al (2013) Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity. Appl Catal A 466:32–37. https://doi.org/10.1016/j.apcata.2013.06.033

    CAS  Article  Google Scholar 

  49. 49.

    Xu X, Ji F, Fan Z, He L (2011) Degradation of glyphosate in soil photocatalyzed by Fe(3)O(4)/SiO(2)/TiO(2) under solar light. Int J Environ Res Public Health 8:1258–1270. https://doi.org/10.3390/ijerph8041258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Mehdilo A, Irannajad M, Rezai B (2013) Effect of chemical composition and crystal chemistry on the zeta potential of ilmenite. Colloids Surf A 428:111–119. https://doi.org/10.1016/j.colsurfa.2013.03.032

    CAS  Article  Google Scholar 

  51. 51.

    Chorna N, Smirnova N, Vorobets V et al (2019) Nitrogen doped iron titanate films: photoelectrochemical, electrocatalytic, photocatalytic and structural features. Appl Surf Sci 473:343–351. https://doi.org/10.1016/j.apsusc.2018.12.154

    CAS  Article  Google Scholar 

  52. 52.

    Linnik O, Chorna N, Smirnova N (2017) Non-porous iron titanate thin films doped with nitrogen: optical, structural, and photocatalytic properties. Nanosc Res Lett 12:249. https://doi.org/10.1186/s11671-017-2027-7

    CAS  Article  Google Scholar 

  53. 53.

    Zimnyakov DA, Sevrugin AV, Yuvchenko SA et al (2016) Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts. Data Br 7:1383–1388. https://doi.org/10.1016/j.dib.2016.04.015

    CAS  Article  Google Scholar 

  54. 54.

    Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part I. J Opt Soc Am 38:448–457. https://doi.org/10.1364/JOSA.38.000448

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Song T, Zhang P, Zeng J et al (2017) Boosting the photocatalytic H2 evolution activity of Fe2O3 polymorphs (α-, γ- and β-Fe2O3) by fullerene [C60]-modification and dye-sensitization under visible light irradiation. RSC Adv 7:29184–29192. https://doi.org/10.1039/C7RA03451B

    CAS  Article  Google Scholar 

  56. 56.

    Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy Environ Sci 4:4270–4275. https://doi.org/10.1039/C1EE02110A

    CAS  Article  Google Scholar 

  57. 57.

    Lin Z, Du C, Yan B, Yang G (2019) Amorphous Fe2O3 for photocatalytic hydrogen evolution. Catal Sci Technol 9:5582–5592. https://doi.org/10.1039/C9CY01621J

    CAS  Article  Google Scholar 

  58. 58.

    Kakuta S, Abe T (2009) Photocatalysis for water oxidation by Fe2O3 nanoparticles embedded in clay compound: correlation between its polymorphs and their photocatalytic activities. J Mater Sci 44:2890–2898. https://doi.org/10.1007/s10853-009-3382-2

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. López-Vásquez.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Vásquez, A., Suárez-Escobar, A. & López-Suárez, F.E. Black Sand-Based Photocatalyst for Hydrogen Production from EDTA Solutions Under UV–Vis Irradiation. Top Catal (2020). https://doi.org/10.1007/s11244-020-01286-z

Download citation

Keywords

  • Black sand
  • EDTA
  • Hydrogen production
  • Mineral-based photocatalyst