Skip to main content

Photocatalytic Degradation of the Malachite Green Dye with Simulated Solar Light Using TiO2 Modified with Sn and Eu

Abstract

This work reports on the synthesis of photocatalysts in thin film form of TiO2 modified with Sn, Eu as well as Sn and Eu simultaneously. The obtained films were characterized by X-Ray Photoelectron Spectroscopy, Raman Spectroscopy and Ultraviolet–Visible Spectroscopy, in order to obtain information on their chemical composition, vibrational features and optical properties respectively. Chemical composition reveal that the tin content was close to 4 at.%, whereas the europium content was approximately 1 at.%. Raman results show that the unmodified material is crystalline TiO2 in the anatase phase; the Sn addition promotes the formation of the rutile crystalline phase. Europium incorporation as a novel modifier produces TiO2 in which a mixture of both crystalline phases coexists. Optical measurements reveal that the band gap energy for all samples remains close to 3.4 eV. The photocatalytic activity was evaluated in the degradation reaction of the Malachite Green dye under simulated solar light. The most relevant result is that photocatalysts containing Sn and Eu show higher photocatalytic activity (60% of MG conversion) than the TiO2 thin film (28% of MG conversion). The main objective of this work was to investigate the changes produced in the resulting material due to Sn and Eu incorporation as well as try to correlate such changes with the corresponding catalytic activity in terms of the Malachite Green dye conversion degree.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Srivastava S, Sinha R, Roy D (2004) Aquat Toxicol 66:319–329

    CAS  Article  Google Scholar 

  2. 2.

    Chong MN, Jin B, Chow CWK, Saint C (2010) Water Res 44:2997–3027

    CAS  Article  Google Scholar 

  3. 3.

    Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529

    CAS  Article  Google Scholar 

  4. 4.

    Chang S, Liu W (2014) Appl Catal B 156–157:466–475

    Article  Google Scholar 

  5. 5.

    Gouvea CAK, Wypych F, Morales SG, Duran N, Nagata N, Peralta-Zamora P (2000) Chemosphere 40:433–440

    CAS  Article  Google Scholar 

  6. 6.

    Anthoula C, Papageorgiou NS, Beglitis CL, Pang G, Teobaldi G, Cabailh Q, Chen AJ, Fisher WA, Hofer, Thornton G (2010) Proc Natl Acad Sci USA 107:6 2391–2396

    Article  Google Scholar 

  7. 7.

    Rawal SB, Bera S, Lee D, Jang D, Lee W (2013) Catal Sci Technol 3:1822–1830

    CAS  Article  Google Scholar 

  8. 8.

    Batzill M, Diebold U (2005) Prog Surf Sci 79:47–154

    CAS  Article  Google Scholar 

  9. 9.

    Ollis DF, Pelizzetti E, Serpone N (1991) Environ Sci Technol 15B:25–29

    Google Scholar 

  10. 10.

    Xu X, Wen S, Mao Q, Feng Y (2019) J Alloy Compd 773:927–933

    CAS  Article  Google Scholar 

  11. 11.

    Pérez-Alvarez J, Solís-Casados DA, Romero S, Escobar-Alarcón L (2014) Adv Mater Res 976:212–216

    Article  Google Scholar 

  12. 12.

    Escobar-Alarcón L, Solís-Casados DA, Romero S, Morales-Mendez JG, Haro-Poniatowski E (2014) Appl Phys A 117:31–35

    Article  Google Scholar 

  13. 13.

    Olvera-Rodríguez I, Hernández R, Medel A, Guzmán C, Escobar-Alarcón L, Brillas E, Sirés I, Esquivel K (2019) Sep Purif Technol 224:189–198

    Article  Google Scholar 

  14. 14.

    Pant B, Park M, Park SJ (2019) Coatings 9:613

    CAS  Article  Google Scholar 

  15. 15.

    Ahmadi N, Nemati A, Solati-Hashjin M (2014) Mater Sci Semicond Process 26:41–48

    CAS  Article  Google Scholar 

  16. 16.

    Solís-Casados D, Escobar-Alarcón L, Fernández M, Valencia F (2013) Fuel 110:17–22

    Article  Google Scholar 

  17. 17.

    Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi 15:627

    CAS  Article  Google Scholar 

  18. 18.

    Lente G (2015) Deterministic kinetics in chemistry and systems biology Springer, ISBN 978-3-319-15481-7, pp 52–58

  19. 19.

    Difa X, Bei Ch, Shaowen C, Jiaguo Y (2015) Appl Catal B 164:380

    Article  Google Scholar 

  20. 20.

    Lei X, Yongge W, Wan G, Yihang G, Yingna G (2015) Appl Surf Sci 332:682

    Article  Google Scholar 

  21. 21.

    Si-Zhan Wu K, Li W-D, Zhang (2015) Appl Surf Sci 324:324

    Article  Google Scholar 

  22. 22.

    Jovalekic C, Zdujic M, Atanasoska LJ (2009) J Alloys Compds 469:441–444

    CAS  Article  Google Scholar 

  23. 23.

    Haro-Poniatowski E, Rodríguez Talavera R, de la Cruz Heredia M, Cano-Corona O, Arroyo-Murillo R (1994) J Mater Res 9:2102

    CAS  Article  Google Scholar 

  24. 24.

    Clegg IM, Everall NJ, King B, Melvin H, Norton C (2001) Appl Spectrosc 55:1138–1150

    CAS  Article  Google Scholar 

  25. 25.

    Melendres CA, Narayanasamy A, Maroni VA, Siegel RW (1989) J Mater Res 4:1246

    CAS  Article  Google Scholar 

  26. 26.

    Guosheng R, Shouliang W, Panpan WJL, Yunyu C, Zhenfei T, Yixing Y, Changhao L, Guosheng S (2014) RSC Adv 4:63408

    Article  Google Scholar 

  27. 27.

    Baltrus JP, Keller MJ (2019) Surf Sci Spectra 26:014001

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors thanks to SIEA UAEM 4978/2020CIB Project; To COMECyT for the Grant 19PP1614. Thanks to Dr. Uvaldo Hernández Balderas, M en C Alejandra Núñez, M en C Lizbeth Triana, Dra. Melina Tapia and LIA Citlalit Martinez Soto for technical assistance

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. A. Solís-Casados.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solís-Casados, D.A., Martínez-Peña, J., Hernández-López, S. et al. Photocatalytic Degradation of the Malachite Green Dye with Simulated Solar Light Using TiO2 Modified with Sn and Eu. Top Catal 63, 564–574 (2020). https://doi.org/10.1007/s11244-020-01240-z

Download citation

Keywords

  • Photocatalysis
  • Sol–gel
  • Thin films
  • TiO2