Skip to main content

Ethanol Conversion to Short-Chain Olefins Over ZSM-5 Zeolite Catalysts Enhanced with P, Fe, and Ni

Abstract

The ethanol dehydration and subsequent ethylene oligomerization to short-chain olefins using catalysts based on ZSM-5 zeolite was studied in detail. P, Fe, and Ni were added by incipient wetness impregnation on zeolites with two SiO2/Al2O3 molar ratios (50 and 80). The catalysts were characterized by N2 adsorption–desorption, XRD, SEM–EDX, FTIR spectroscopy of adsorbed pyridine, and XPS techniques, while the catalytic activity was evaluated using an isothermal fixed-bed reactor. The impregnation of P, Fe, and Ni significantly improved the formation of the desired C3+ olefins (olefins having three or more C atoms). Particularly, the zeolite with SiO2/Al2O3 molar ratio = 50 and impregnated with P, exhibited the highest selectivity (C3+ olefins > 45 wt% at TOS = 5 h) in comparison with the rest of the evaluated catalysts. On the contrary, catalysts with SiO2/Al2O3 molar ratio = 80 showed lower selectivity to C3+ olefins, producing more side products (i.e. paraffins, aromatics and diethyl-ether).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Lu J, Liu Y (2011) J Nat Gas Chem 20(2):162–166. https://doi.org/10.1016/S1003-9953(10)60163-6

    CAS  Article  Google Scholar 

  2. 2.

    Inaba M, Murata K, Saito M, Takahara I (2007) Green Chem 9(6):638–646. https://doi.org/10.1039/B614157A

    CAS  Article  Google Scholar 

  3. 3.

    Galadima A, Muraza O (2015) J Ind Eng Chem 31:1–14. https://doi.org/10.1016/j.jiec.2015.07.015

    CAS  Article  Google Scholar 

  4. 4.

    Cherubini F (2010) Ener Convers Manage 51(7):1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    CAS  Article  Google Scholar 

  5. 5.

    Li X, Kant A, He Y, Thakkar HV, Atanga MA, Rezaei F, Ludlow DK, Rownaghi AA (2016) Catal Today 276:62–77. https://doi.org/10.1016/j.cattod.2016.01.038

    CAS  Article  Google Scholar 

  6. 6.

    Renewable Fuels Association (2018) World fuel ethanol production. https://ethanolrfa.org/statistics/annual-ethanol-production/. Accessed 20 June 2019

  7. 7.

    Sousa ZSB, Veloso CO, Henriques CA, Teixeira da Silva V (2016) J Mol Catal a-Chem 422:266–274. https://doi.org/10.1016/j.molcata.2016.03.005

    CAS  Article  Google Scholar 

  8. 8.

    Kondo JN, Ito K, Yoda E, Wakabayashi F, Domen K (2005) J Phys Chem B 109(21):10969–10972. https://doi.org/10.1021/jp050721q

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zhang X, Wang R, Yang X, Zhang F (2008) Micropor Mesopor Mat 116(1–3):210–215. https://doi.org/10.1016/j.micromeso.2008.04.004

    CAS  Article  Google Scholar 

  10. 10.

    Nash CP, Ramanathan A, Ruddy DA, Behl M, Gjersing E, Griffin M, Zhu H, Subramaniam B, Schaidle JA, Hensley JE (2016) Appl Catal A-Gen 510:110–124. https://doi.org/10.1016/j.apcata.2015.11.019

    CAS  Article  Google Scholar 

  11. 11.

    Madeira FF, Gnep NS, Magnoux P, Maury S, Cadran N (2009) Appl Catal A-Gen 367(1–2):39–46. https://doi.org/10.1016/j.apcata.2009.07.033

    CAS  Article  Google Scholar 

  12. 12.

    Zhang D, Wang R, Yang X (2008) Catal Lett 124(3):384–391. https://doi.org/10.1007/s10562-008-9481-x

    CAS  Article  Google Scholar 

  13. 13.

    Lu J, Liu Y, Li N (2011) J Nat Gas Chem 20(4):423–427. https://doi.org/10.1016/S1003-9953(10)60193-4

    CAS  Article  Google Scholar 

  14. 14.

    Goto D, Harada Y, Furumoto Y, Takahashi A, Fujitani T, Oumi Y, Sadakane M, Sano T (2010) Appl Catal A-Gen 383(1–2):89–95. https://doi.org/10.1016/j.apcata.2010.05.032

    CAS  Article  Google Scholar 

  15. 15.

    Takahashi A, Xia W, Nakamura I, Shimada H, Fujitani T (2012) Appl Catal A-Gen 423 (Supplement C):162–167. https://doi.org/10.1016/j.apcata.2012.02.029

    CAS  Article  Google Scholar 

  16. 16.

    Song Z, Takahashi A, Mimura N, Fujitani T (2009) Catal Lett 131(3):364–369. https://doi.org/10.1007/s10562-009-0071-3

    CAS  Article  Google Scholar 

  17. 17.

    Song Z, Takahashi A, Nakamura I, Fujitani T (2010) Appl Catal A-Gen 384(1–2):201–205. https://doi.org/10.1016/j.apcata.2010.06.035

    CAS  Article  Google Scholar 

  18. 18.

    Inaba M, Murata K, Takahara I (2009) React Kinet Catal Lett 97(1):19–26. https://doi.org/10.1007/s11144-009-0002-8

    CAS  Article  Google Scholar 

  19. 19.

    Inaba M, Murata K, Takahara I, Inoue K (2011) J Chem Technol Biotechnol 86(1):95–104. https://doi.org/10.1002/jctb.2519

    CAS  Article  Google Scholar 

  20. 20.

    Inaba M, Murata K, Takahara I, Inoue K (2012) Adv Mater Sci Eng 2012:7. https://doi.org/10.1155/2012/293485

    CAS  Article  Google Scholar 

  21. 21.

    Gayubo AG, Alonso A, Valle B, Aguayo AT, Bilbao J (2010) Appl Catal B-Environ 97(1–2):299–306. https://doi.org/10.1016/j.apcatb.2010.04.021

    CAS  Article  Google Scholar 

  22. 22.

    Furumoto Y, Harada Y, Tsunoji N, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T (2011) Appl Catal A-Gen 399(1):262–267. https://doi.org/10.1016/j.apcata.2011.04.009

    CAS  Article  Google Scholar 

  23. 23.

    Ouyang J, Kong F, Su G, Hu Y, Song Q (2009) Catal Lett 132(1):64–74. https://doi.org/10.1007/s10562-009-0047-3

    CAS  Article  Google Scholar 

  24. 24.

    Tretyakov VF, Makarfi YI, Tretyakov KV, Frantsuzova NA, Talyshinskii RM (2010) Catal ind 2(4):402–420. https://doi.org/10.1134/s2070050410040161

    Article  Google Scholar 

  25. 25.

    Makarfi YI, Yakimova MS, Lermontov AS, Erofeev VI, Koval LM, Tretiyakov VF (2009) Chem Eng J 154(1–3):396–400. https://doi.org/10.1016/j.cej.2009.06.001

    CAS  Article  Google Scholar 

  26. 26.

    Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J (2010) Fuel 89(11):3365–3372. https://doi.org/10.1016/j.fuel.2010.03.002

    CAS  Article  Google Scholar 

  27. 27.

    Phung TK, Radikapratama R, Garbarino G, Lagazzo A, Riani P, Busca G (2015) Fuel Process Technol 137:290–297. https://doi.org/10.1016/j.fuproc.2015.03.012

    CAS  Article  Google Scholar 

  28. 28.

    Van der Borght K, Galvita VV, Marin GB (2015) Appl Catal A-Gen 492:117–126. https://doi.org/10.1016/j.apcata.2014.12.020

    CAS  Article  Google Scholar 

  29. 29.

    Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41(1):207–219. https://doi.org/10.1016/S0920-5861(98)00050-9

    CAS  Article  Google Scholar 

  30. 30.

    McCue AJ, Mutch GA, McNab AI, Campbell S, Anderson JA (2016) Catal Today 259:19–26. https://doi.org/10.1016/j.cattod.2015.03.039

    CAS  Article  Google Scholar 

  31. 31.

    Pieta IS, Ishaq M, Wells RPK, Anderson JA (2010) Appl Catal A-Gen 390(1):127–134. https://doi.org/10.1016/j.apcata.2010.10.001

    CAS  Article  Google Scholar 

  32. 32.

    Emeis CA (1993) J Catal 141(2):347–354. https://doi.org/10.1006/jcat.1993.1145

    CAS  Article  Google Scholar 

  33. 33.

    Barzetti T, Selli E, Moscotti D, Forni L (1996) J Chem Soc. Faraday Trans 92(8):1401–1407. https://doi.org/10.1039/FT9969201401

    CAS  Article  Google Scholar 

  34. 34.

    Li X, Han D, Wang H, Liu G, Wang B, Li Z, Wu J (2015) Fuel 144:9–14. https://doi.org/10.1016/j.fuel.2014.12.005

    CAS  Article  Google Scholar 

  35. 35.

    Haw JF (2002) Phys Chem Chem Phys 4(22):5431–5441. https://doi.org/10.1039/B206483A

    CAS  Article  Google Scholar 

  36. 36.

    Singh R, Dutta PK (2003) MFI: a case study of zeolite synthesis. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology. Marcel Dekker, Inc., New York. https://doi.org/10.1201/9780203911167

  37. 37.

    Rasouli M, Atashi H, Mohebbi-Kalhori D, Yaghobi N (2017) J Taiwan Inst Chem E 78:438–446. https://doi.org/10.1016/j.jtice.2017.05.018

    CAS  Article  Google Scholar 

  38. 38.

    Armaroli T, Simon LJ, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G (2006) Appl Catal A-Gen 306:78–84. https://doi.org/10.1016/j.apcata.2006.03.030

    CAS  Article  Google Scholar 

  39. 39.

    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257(7):2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    CAS  Article  Google Scholar 

  40. 40.

    Yamashita T, Hayes P (2008) Appl Surf Sci 254(8):2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    CAS  Article  Google Scholar 

  41. 41.

    Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Surf Interface Anal 36(12):1564–1574. https://doi.org/10.1002/sia.1984

    CAS  Article  Google Scholar 

  42. 42.

    Kraushofer F, Jakub Z, Bichler M, Hulva J, Drmota P, Weinold M, Schmid M, Setvin M, Diebold U, Blaha P, Parkinson GS (2018) J Phys Chem C 122(3):1657–1669. https://doi.org/10.1021/acs.jpcc.7b10515

    CAS  Article  Google Scholar 

  43. 43.

    Mansour AN, Brizzolara RA (1996) Surf Sci Spectra 4(4):351–356. https://doi.org/10.1116/1.1247832

    CAS  Article  Google Scholar 

  44. 44.

    Mansour AN (1994) Surf Sci Spectra 3(3):231–238. https://doi.org/10.1116/1.1247751

    CAS  Article  Google Scholar 

  45. 45.

    Wang Y, Sherwood PMA (2002) Surf Sci Spectra 9(1):159–165. https://doi.org/10.1116/11.20030115

    CAS  Article  Google Scholar 

  46. 46.

    Sherwood PMA (2002) Surf Sci Spectra 9(1):62–66. https://doi.org/10.1116/11.20030101

    CAS  Article  Google Scholar 

  47. 47.

    Blasco T, Corma A, Martínez-Triguero J (2006) J Catal 237(2):267–277. https://doi.org/10.1016/j.jcat.2005.11.011

    CAS  Article  Google Scholar 

  48. 48.

    Zhuang J, Ma D, Yang G, Yan Z, Liu X, Liu X, Han X, Bao X, Xie P, Liu Z (2004) J Catal 228(1):234–242. https://doi.org/10.1016/j.jcat.2004.08.034

    CAS  Article  Google Scholar 

  49. 49.

    Marques JP, Gener I, Ayrault P, Bordado JC, Lopes JM, Ramôa Ribeiro F, Guisnet M (2003) Micropor Mesopor Mat 60(1):251–262. https://doi.org/10.1016/S1387-1811(03)00382-2

    CAS  Article  Google Scholar 

  50. 50.

    Busca G (2017) Micropor Mesopor Mat 254:3–16. https://doi.org/10.1016/j.micromeso.2017.04.007

    CAS  Article  Google Scholar 

  51. 51.

    Suganuma S, Nakamura K, Okuda A, Katada N (2017) Mol Catal 435:110–117. https://doi.org/10.1016/j.mcat.2017.03.029

    CAS  Article  Google Scholar 

  52. 52.

    Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J (2002) Ind Eng Chem Res 41(17):4216–4224. https://doi.org/10.1021/ie020068i

    CAS  Article  Google Scholar 

  53. 53.

    Ferreira Madeira F, Gnep NS, Magnoux P, Vezin H, Maury S, Cadran N (2010) Chem Eng J 161(3):403–408. https://doi.org/10.1016/j.cej.2010.01.026

    CAS  Article  Google Scholar 

  54. 54.

    Song Y, Zhang L, Li G, Shang Y, Zhao X, Ma T, Zhang L, Zhai Y, Gong Y, Xu J, Deng F (2017) Fuel Process Technol 168:105–115. https://doi.org/10.1016/j.fuproc.2017.08.020

    CAS  Article  Google Scholar 

Download references

Acknowledgements

To National Council of Science and Technology (CONACYT) for the scholarship No. 221945 granted to Ricardo Gil for his doctoral studies. To the BIOTURBOSINA cluster, under support from CONACYT-SENER project No. 248090, for the resources granted to carry out this research. To National Laboratory of Nano and Biomaterials (LANNBIO), CINVESTAV-Mérida, under founding from projects FOMIX Yucatán 2008–108160 CONACYT LAB-2009–01-123913, 292692, 294643, for the facilities to perform the BET and XPS characterization analysis. To UNICAT-FQ-UNAM for the facilities to perform the FTIR acidity characterization. To Tanit Toledano Thompson (UER-CICY) for her technical assistance in SEM–EDX measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan C. Chavarría-Hernández.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4142 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gil-Horán, R.H., Chavarría-Hernández, J.C., Quintana-Owen, P. et al. Ethanol Conversion to Short-Chain Olefins Over ZSM-5 Zeolite Catalysts Enhanced with P, Fe, and Ni. Top Catal 63, 414–427 (2020). https://doi.org/10.1007/s11244-020-01229-8

Download citation

Keywords

  • Ethanol to hydrocarbons
  • ZSM-5 zeolite
  • Short-chain olefins
  • Phosphorus
  • Iron
  • Nickel