Skip to main content
Log in

Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge

  • Original Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2 + MeCN mixture. We have demonstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  Google Scholar 

  2. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li/Air batteries. J Electrochem Soc 159:R1–R30

    Article  CAS  Google Scholar 

  3. Lu Y-C, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Shao-Horn Y (2013) Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci 6:750–768

    Article  CAS  Google Scholar 

  4. Li Y, Wang X, Dong S, Chen X, Cui G (2016) Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries. Adv Energy Mater 6:1600751–1600726

    Article  Google Scholar 

  5. Itkis DM, Semenenko DA, Kataev EY, Belova AI, Neudachina VS, Sirotina AP, Hävecker M, Teschner D, Knop-Gericke A, Dudin P, Barinov A, Goodilin EA, Shao-Horn Y, Yashina LV (2013) Reactivity of carbon in lithium–oxygen battery positive electrodes. Nano Lett 13:4697–4701

    Article  CAS  Google Scholar 

  6. Kozmenkova AY, Kataev EY, Belova AI, Amati M, Gregoratti L, Velasco-Vélez J, Knop-Gericke A, Senkovsky B, Vyalikh DV, Itkis DM, Shao-Horn Y, Yashina LV (2016) Tuning surface chemistry of TiC electrodes for lithium–air batteries. Chem Mater 28:8248–8255

    Article  CAS  Google Scholar 

  7. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3:997–1001

    Article  CAS  Google Scholar 

  8. Balaish M, Kraytsberg A, Ein-Eli Y (2014) A critical review on lithium-air battery electrolytes. Phys Chem Chem Phys 16:2801–2822

    Article  CAS  Google Scholar 

  9. Sharon D, Hirshberg D, Afri M, Garsuch A, Frimer AA, Aurbach D (2015) Lithium-oxygen electrochemistry in non-aqueous solutions. Isr J Chem 55:508–520

    Article  CAS  Google Scholar 

  10. Marchini F, Herrera S, Torres W, Tesio AY, Williams FJ, Calvo EJ (2015) Surface study of lithium–air battery oxygen cathodes in different solvent–electrolyte pairs. Langmuir 31:9236–9245

    Article  CAS  Google Scholar 

  11. Veith GM, Nanda J, Delmau LH, Dudney NJ (2012) Influence of lithium salts on the discharge chemistry of Li–air cells. J Phys Chem Lett 3:1242–1247

    Article  CAS  Google Scholar 

  12. Nasybulin E, Xu W, Engelhard MH, Nie Z, Burton SD, Cosimbescu L, Gross ME, Zhang J-G (2013) Effects of electrolyte salts on the performance of Li–O2 batteries. J Phys Chem C 117:2635–2645

    Article  CAS  Google Scholar 

  13. Chalasani D, Lucht BL (2012) Reactivity of electrolytes for lithium-oxygen batteries with Li2O2. ECS Electrochem Lett 1:A38–A42

    Article  CAS  Google Scholar 

  14. Kwabi DG, Batcho TP, Amanchukwu CV, Ortiz-Vitoriano N, Hammond P, Thompson CV, Shao-Horn Y (2014) Chemical instability of dimethyl sulfoxide in lithium–air batteries. J Phys Chem Lett 5:2850–2856

    Article  CAS  Google Scholar 

  15. Schwenke KU, Meini S, Wu X, Gasteiger HA, Piana M (2013) Stability of superoxide radicals in glyme solvents for non-aqueous Li–O2 battery electrolytes. Phys Chem Chem Phys 15:11830–11839

    Article  CAS  Google Scholar 

  16. Qiu SL, Lin CL, Chen J, Strongin M (1989) Photoemission studies of the interaction of Li and solid molecular oxygen. Phys Rev B 39:6194–6197

    Article  CAS  Google Scholar 

  17. Chau VKC, Chen Z, Hu H, Chan K-Y (2016) Exploring solvent stability against nucleophilic attack by solvated LiO2 in an aprotic Li-O2 battery. J Electrochem Soc 164:A284–A289

    Article  Google Scholar 

  18. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2 •–). J Phys Chem A 115:12399–12409

    Article  CAS  Google Scholar 

  19. Bryantsev VS, Uddin J, Giordani V, Walker W, Addison D, Chase GV (2012) The identification of stable solvents for nonaqueous rechargeable Li-Air batteries. J Electrochem Soc 160:A160–A171

    Article  Google Scholar 

  20. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J Phys Chem Lett 2:1161–1166

    Article  CAS  Google Scholar 

  21. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  22. Leskes M, Moore AJ, Goward GR, Grey CP (2013) Monitoring the electrochemical processes in the lithium–air battery by solid state NMR spectroscopy. J Phys Chem C 117:26929–26939

    Article  CAS  Google Scholar 

  23. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50:8609–8613

    Article  CAS  Google Scholar 

  24. Sharon D, Afri M, Noked M, Garsuch A, Frimer AA, Aurbach D (2013) Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J Phys Chem Lett 4:3115–3119

    Article  CAS  Google Scholar 

  25. Chen Y, Freunberger SA, Peng Z, Bardé F, Bruce PG (2012) Li–O2 battery with a dimethylformamide electrolyte. J Am Chem Soc 134:7952–7957

    Article  CAS  Google Scholar 

  26. Sharon D, Hirsberg D, Afri M, Garsuch A, Frimer AA, Aurbach D, Takami N (2014) Reactivity of amide based solutions in lithium–oxygen cells. J Phys Chem C 118:15207–15213

    Article  CAS  Google Scholar 

  27. Frimer AA, Farkash-Solomon T, Aljadeff G (1986) Mechanism of the superoxide anion radical (O2 ) mediated oxidation of diarylmethanes. J Org Chem 51:2093–2098

    Article  CAS  Google Scholar 

  28. Khetan A, Pitsch H, Viswanathan V (2014) Solvent degradation in nonaqueous Li-O2 batteries: oxidative stability versus H-abstraction. J Phys Chem Lett 5:2419–2424

    Article  CAS  Google Scholar 

  29. Sawaki Y, Ogata Y (1981) Mechanism of the reaction of nitriles with alkaline hydrogen peroxide. Reactivity of peroxycarboximidic acid and application to superoxide ion reaction. Bull Chem Soc Jpn 54:793–799

    Article  CAS  Google Scholar 

  30. Aleshin GY, Semenenko DA, Belova AI, Zakharchenko TK, Itkis DM, Goodilin EA, Tretyakov YD (2011) Protected anodes for lithium-air batteries. Solid State Ionics 184:62–64

    Article  CAS  Google Scholar 

  31. Bergner BJ, Busche MR, Pinedo R, Berkes BB, Schröder D, Janek J (2016) How to improve capacity and cycling stability for next generation Li–O2 batteries: approach with a solid electrolyte and elevated redox mediator concentrations. ACS Appl Mater Interfaces 8:7756–7765

    Article  CAS  Google Scholar 

  32. Johnson L, Li C, Liu Z, Chen Y, Freunberger SA, Tarascon J-M, Praveen BB, Dholakia K, Bruce PG (2014) The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat Chem 6:1091–1099

    Article  CAS  Google Scholar 

  33. Younesi R, Norby P, Vegge T (2014) A new look at the stability of dimethyl sulfoxide and acetonitrile in Li-O2 batteries. ECS Electrochem Lett 3:A15–A18

    Article  CAS  Google Scholar 

  34. Laino T, Curioni A (2013) Chemical reactivity of aprotic electrolytes on a solid Li2O2 surface: screening solvents for Li–air batteries. New J Phys 15:095009

    Article  Google Scholar 

  35. Gunes F, Han GH, Kim KK, Kim ES, Chae SJ (2009) Large-area graphene-based flexible transparent conducting films. Nano 04:83–90

    Article  Google Scholar 

  36. Vizgalov V, Nestler T, Trusov LA, Bobrikov I, Ivankov OI, Avdeev M, Motylenko M, Brendler E, Vyalikh A, Mayer DC, Itkis DM (2018) Enhancing lithium-ion conductivity in NASICON glass-ceramics by adding yttria. CrystEngComm 20:1375–1382

    Article  CAS  Google Scholar 

  37. Her M, Beams R, Novotny L (2013) Graphene transfer with reduced residue. Phys Lett A 377:1455–1458

    Article  CAS  Google Scholar 

  38. Yashina LV, Zyubina TS, Püttner R, Zyubin AS, Shtanov VI, Tikhonov EV (2008) A combined photoelectron spectroscopy and ab initio study of the adsorbate system O2/PbTe(001) and the oxide layer growth kinetics. J Phys Chem C 112:19995–20006

    Article  CAS  Google Scholar 

  39. Kataev EY, Itkis DM, Fedorov AV, Senkovsky BV, Usachov DY, Verbitskiy NI, Grüneis A, Barinov A, Tsukanova DY, Volykhov AA, Mironovich KV, Krivchenko VA, Rybin MG, Obraztsova ED, Laubschat C, Vyalikh DV, Yashina LV (2015) Oxygen reduction by lithiated graphene and graphene-based materials. ACS Nano 9:320–326

    Article  CAS  Google Scholar 

  40. Tao F, Chen XF, Wang ZH, Xu GQ (2002) Binding and structure of acetonitrile on Si(111)-7 × 7. J Phys Chem B 106:3890–3895

    Article  CAS  Google Scholar 

  41. Tao F, Wang ZH, Qiao MH, Liu Q, Sim WS, Xu GQ (2001) Covalent attachment of acetonitrile on Si(100) through Si–C and Si–N linkages. J Chem Phys 115:8563–8569

    Article  CAS  Google Scholar 

  42. Liu J, Roberts M, Younesi R, Dahbi M, Edström K, Gustafsson T, Zhu J (2013) Accelerated electrochemical decomposition of Li2O2 under X-ray illumination. J Phys Chem Lett 4:4045–4050

    Article  CAS  Google Scholar 

  43. Oultache AK, Prud’homme RE (2000) XPS studies of Ni deposition on polymethyl methacrylate and poly (styrene-co-acrylonitrile). Polym Adv Technol 11:316–323

    Article  CAS  Google Scholar 

  44. Olivares O, Likhanova NV, Gómez B, Navarrete J, Llanos-Serrano ME, Arce E, Hallen JM (2006) Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. Appl Surf Sci 252:2894–2909

    Article  CAS  Google Scholar 

  45. Cecchet F, Pilling M, Hevesi L, Schergna S, Wong JKY, Clarkson GJ, Leigh DA, Rudolf P (2003) Grafting of benzylic amide macrocycles onto acid-terminated self-assembled monolayers studied by XPS, RAIRS, and contact angle measurements. J Phys Chem B 107:10863–10872

    Article  CAS  Google Scholar 

  46. Fustin CA, Gouttebaron R, De Nadaı C, Caudano R (2001) Photoemission study of pristine and potassium intercalated benzylic amide [2] catenane films. Surf Sci 474:37–46

    Article  CAS  Google Scholar 

  47. Sano T, Mera N, Kanai Y, Nishimoto C, Tsutsui S, Hirakawa T, Negishi N (2012) Origin of visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S atoms in a wet N-doping process. Appl Catal B 128:77–83

    Article  CAS  Google Scholar 

  48. Wielant J, Hauffman T, Blajiev O, Hausbrand R, Terryn H (2007) Influence of the iron oxide acid–base properties on the chemisorption of model epoxy compounds studied by XPS. J Phys Chem C 111:13177–13184

    Article  CAS  Google Scholar 

  49. Batich CD, Donald DS (1984) X-ray photoelectron spectroscopy of nitroso compounds: relative ionicity of the closed and open forms. J Am Chem Soc 106:2758–2761

    Article  CAS  Google Scholar 

  50. Beard BC (1990) Cellulose nitrate as a binding energy reference in N (1s) XPS studies of nitrogen-containing organic molecules. Appl Surf Sci 45:221–227

    Article  CAS  Google Scholar 

  51. Pippig F, Sarghini S, Holländer A, Paulussen S, Terryn H (2009) TFAA chemical derivatization and XPS. Analysis of OH and NHx polymers. Surf Interface Anal 41:421–429

    Article  CAS  Google Scholar 

  52. Mendes P, Belloni M, Ashworth M, Hardy C, Nikitin K, Fitzmaurice D, Critchley K, Evans S, Preece J (2003) A novel example of X-ray-radiation-induced chemical reduction of an aromatic nitro-group-containing thin film on SiO2 to an aromatic amine film. ChemPhysChem 4:884–889

    Article  CAS  Google Scholar 

  53. CSID:9161383 (2018) ChemSpider, RSC. http://www.chemspider.com/Chemical-Structure.9161383.html. Accessed 5 July 2018

Download references

Acknowledgements

This work of A.K-G., J.J.V-V. and D.M.I. was supported by the Russian Ministry of Science and Education (RFMEFI61614×0007) and Bundesministerium für Bildung and Forschung (Project No. 05K2014) in the framework of the joint Russian-German research project “SYnchrotron and NEutron STudies for Energy Storage (SYNESTESia)”. T.K.Z acknowledges Center for Electrochemical Energy of Skolkovo Institute of Science and Technology for financial support. The work of O.O.K., A.I.B and L.V.Y. is performed within the joint project of the Russian Science Foundation (16-42-01093) and DFG (LA655-17/1). We are grateful to HZB for beamtime granted at ISISS and RGBL beamlines. T.K.Z. and A.S.F. thank to the Russian German laboratory at HZB for support provided. Authors are appreciated to Victor Vizgalov for solid electrolyte membrane preparation. Travelling of T.K.Z. was supported by German-Russian Interdisciplinary Science Center (G-RISC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lada V. Yashina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 249 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharchenko, T.K., Belova, A.I., Frolov, A.S. et al. Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge. Top Catal 61, 2114–2122 (2018). https://doi.org/10.1007/s11244-018-1072-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1072-5

Keywords

Navigation