Skip to main content
Log in

Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/P-H Coupling Reactions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Joined electrolysis of arenes (benzene or coumarin derivatives) and diethyl-H-phosphonate (EtO)2P(O)H in the presence of [CoCl2(bpy)] catalyst (5%) in an ethanol-aqueous solution in reductive conditions allows obtaining the desired products in a single step by aromatic C–H bonds phosphonation with yields up to 70%. The only by-product is hydrogen; the reaction proceeds at room temperature and does not require specially added reducing agents and oxidants or other initiators. Radical mechanism has been confirmed for the catalytic reaction proceeding via bicobalt phosphonates with Co–P bond, the structure of which also has been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman LK, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem 9:411–420

    CAS  Google Scholar 

  2. Fabry DC, Rueping M (2016) Merging visible light photoredox catalysis with metal catalyzed C–H activations: on the role of oxygen and superoxide ions as oxidants. Acc Chem Res 49:1969–1979

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chupakhin ON, Charushin VN (2016) Recent advances in the field of nucleophilic aromatic substitution of hydrogen. Tetrahedron Lett 57:2665–2672

    CAS  Google Scholar 

  4. Rodesly F, Oble J, Poli G (2017) Metal-catalyzed CH activation/functionalization: the fundamentals. J Mol Catal A 426:275–296

    Google Scholar 

  5. Budnikova YH, Sinyashin OG (2015) Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russ Chem Rev 84:917–951

    CAS  Google Scholar 

  6. Mikhaylov DY, Budnikova YH (2013) Fluoroalkylation of organic compounds. Russ Chem Rev 82:835–864

    Google Scholar 

  7. Odinets IL, Vinogradova NM, Lyssenko KA, Petrovskii PV, Mastryukova TA, Röschenthaler GV (2006) Diastereoselective cycloalkylation of phosphoryl and thiophosphoryl acetonitriles by α, ψ-dihalogenalkanes under phase transfer catalysis conditions. Heteroat Chem 17:13–21

    CAS  Google Scholar 

  8. Trofimov BA, Arbuzova SN, Gusarova NK (1999) Phosphine in the synthesis of organophosphorus compounds. Russ Chem Rev 68:215–228

    CAS  Google Scholar 

  9. Lebel H, Morin S, Paquet V (2003) Alkylation of phosphine boranes by phase-transfer catalysis. Org Lett 5:2347–2349

    CAS  PubMed  Google Scholar 

  10. Odinets IL, Matveeva EV (2012) The application of green chemistry methods in organophosphorus synthesis. Russ Chem Rev 81:221–238

    CAS  Google Scholar 

  11. Budnikova YH, Gryaznova TV, Grinenko VV, Dudkina YB, Khrizanforov MN (2017) Eco-efficient electrocatalytic C–P bond formation. Pure Appl Chem 89:311–330

    CAS  Google Scholar 

  12. Budnikova YH, Krasnov SA, Gryaznova TV, Tomilov AP, Turigin VV, Magdeev IM, Sinyashin OG (2008) “Green” ways of phosphorus compounds preparation. Phosphorus Sulfur Silicon Relat Elem 183:513–518

    CAS  Google Scholar 

  13. Budnikova YH, Yakhvarov DG, Sinyashin OG (2005) Electrocatalytic eco-efficient functionalization of white phosphorus. J Organomet Chem 690:2416–2425

    CAS  Google Scholar 

  14. Li C-J (2016) Exploration of new chemical reactivities for sustainable molecular transformations. Chem 1(3):423–437

    CAS  Google Scholar 

  15. Feng C-G, Ye M, Xiao K-J, Li S, Yu J-Q (2013) Pd(II)-catalyzed phosphorylation of aryl C–H bonds. J Am Chem Soc 135(25):9322–9325

    CAS  PubMed  Google Scholar 

  16. Chen P, Sun Y, Wu Y, Liu L, Zhu J, Zhao Y (2017) A theoretical study on the mechanism of ruthenium(II)-catalyzed phosphoryl-directed ortho-selective C–H bond activations: the phosphoryl hydroxy group triggered Ru(II)/Ru(0) catalytic cycle. Org Chem Front 4:1482–1492

    CAS  Google Scholar 

  17. Liu L, Yuan H, Fu T, Wang T, Gao X, Zeng Z, Zhu J, Zhao Y (2014) Double role of the hydroxy group of phosphoryl in palladium(II)-catalyzed ortho-olefination: a combined experimental and theoretical investigation. J Org Chem 79(1):80–87

    CAS  PubMed  Google Scholar 

  18. Kosolapoff GM, Maier L (1972) Organic phosphorus compounds. Wiley, New York

    Google Scholar 

  19. Corbridge DEC (2013) Phosphorus: chemistry, biochemistry and technology. CRC Press, London

    Google Scholar 

  20. Swaminathan S, Narayanan KV (1971) Rupe and meyer-schuster rearrangements. Chem Rev 71:429–438

    CAS  Google Scholar 

  21. Bhattacharya AK, Thyagarajan G (1981) Michaelis-arbuzov rearrangement. Chem Rev 81:415–430

    CAS  Google Scholar 

  22. Kostova I (2005) Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem 5:29–46

    CAS  Google Scholar 

  23. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:1–14

    Google Scholar 

  24. Budzisz E, Brzezinska E, Krajewska U, Rozalski M (2003) Cytotoxic effects, alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues. Eur J Med Chem 38:597–603

    CAS  PubMed  Google Scholar 

  25. Engel R, Cohen JI (2003) Synthesis of carbon–phosphorus bonds. CRC Press, Boca Raton

    Google Scholar 

  26. Tavs P (1970) Reaktion von Arylhalogeniden mit Trialkylphosphiten und Benzolphosphonigsäure-dialkylestern zu aromatischen Phosphonsäureestern und Phosphinsäureestern unter Nickelsalzkatalyse. Eur J Inorg Chem 103:2428–2436

    CAS  Google Scholar 

  27. Connor JA, Jones AC, Price R (1980) Copper (II) ethanoate-assisted phosphonation of aryl halides. J Chem Soc Chem Commun 4:137–138

    Google Scholar 

  28. Hall N, Price R (1979) The copper-promoted reaction of o-halogenodiarylazo-compounds with nucleophiles. Part 1. The copper-promoted reaction of o-bromodiarylazo-compounds with trialkyl phosphites. A novel method for the preparation of dialkyl arylphosphonates. J Chem Soc Perkin Trans 1:2634–2641

    Google Scholar 

  29. Hirao T, Masunaga T, Oshiro Y, Agawa T (1981) A novel synthesis of dialkyl arenephosphonates. Synthesis 1981:56–57

    Google Scholar 

  30. Hirao T, Masunaga T, Yamada N, Oshiro Y, Agawa T (1982) Palladium-catalyzed new carbon-phosphorus bond formation. Bull Chem Soc Jpn 55:909–913

    CAS  Google Scholar 

  31. Battagia S, Vyle S (2003) Novel methodology for the preparation and purification of oligonucleotides incorporating phosphorothiolate termini. Tetrahedron Lett 44:861–863

    Google Scholar 

  32. Obrycki R, Griffin CE (1968) Phosphonic acids and esters. XIX. Synthesis of substituted phenyl-and arylphosphonates by the photoinitiated arylation of trialkyl phosphites. J Org Chem 33:632–636

    CAS  Google Scholar 

  33. Bunnett JF, Creary X (1974) Photostimulated condensation of aryl iodides with potassium dialkyl phosphites to form dialkyl arylphosphonates. J Org Chem 39:3612–3614

    CAS  Google Scholar 

  34. Jason EF, Fields EK (1962) Free-radical phosphonation of aromatic compounds. J Org Chem 27:1402–1405

    CAS  Google Scholar 

  35. Kottman H, Skarzewski J, Effenberger F (1987) Oxidative phosphonylierung von aromaten mit cerammoniumnitrat. Synthesis 1987:797–801

  36. Effenberger F, Kottmann H (1985) Oxidative phosphonylation of aromatic compounds. Tetrahedron 41:4171–4182

    CAS  Google Scholar 

  37. Kagayama T, Nakano A, Sakaguchi S, Ishii Y (2006) Phosphonation of arenes with dialkyl phosphites catalyzed by Mn (II)/Co (II)/O2 redox couple. Org Lett 8:407–409

    CAS  PubMed  Google Scholar 

  38. Mao X, Ma X, Zhang S, Hu H, Zhu C, Cheng Y (2013) Silver-catalyzed highly regioselective phosphonation of arenes bearing electron-withdrawing groups. Eur J Org Chem 20:4245–4248

    Google Scholar 

  39. Ohmori H, Nakai S, Masui M (1979) Anodic oxidation of organophosphorus compounds. Part 2. Formation of dialkyl arylphosphonates via arylation of trialkyl phosphites. J Chem Soc Perkin Trans 1:2023–2026

    Google Scholar 

  40. Nikitin EV, Romakhin AS, Parakin OV, Romanov GV, Kargin YM, Pudovik AN (1983) Electrochemical synthesis of aryl phosphonates. Russ Chem Bull 32:566–569

    Google Scholar 

  41. Cruz H, Gallardo I, Guirado G (2011) Electrochemical synthesis of organophosphorus compounds through nucleophilic aromatic substitution: mechanistic investigations and synthetic scope. Eur J Org Chem 36:7378–7389

    Google Scholar 

  42. Khrizanforov MN, Strekalova SO, Kholin KV, Khrizanforova VV, Kadirov MK, Gryaznova TV, Budnikova YH (2017) Novel approach to metal-induced oxidative phosphorylation of aromatic compounds. Catal Today 279:133–141

    CAS  Google Scholar 

  43. Robison CN, Addison JF (1966) Condensation of triethyl phosphonoacetate with aromatic aldehydes. J Org Chem 31:4325–4326

    Google Scholar 

  44. Singh RK, Rogers MD (1985) An efficient synthesis of diethyl coumarin-3-phosphonates. J Heterocycl Chem 22:1713–1714

    CAS  Google Scholar 

  45. Bouyssou P, Chenault J (1991) Phosphonates and phosphine oxides as reagents in a one-pot synthesis of coumarins. Tetrahedron Lett 32:5341–5344

    CAS  Google Scholar 

  46. Rodios NA, Bojilova A, Terzis A, Raptopoulou CP (1994) Reaction of 3-nitro-and 3-diethylphosphonocoumarin with phenacyl bromide. X-ray molecular structure of 3-nitro-3, 4-phenacylidenecoumarin. J Heterocycl Chem 31:1129–1133

    CAS  Google Scholar 

  47. Bojilova A, Nikolova R, Ivanov C, Rodios NA, Terzis A, Raptopoulou CP (1996) A comparative study of the interaction of salicylaldehydes with phosphonoacetates under Knoevenagel reaction conditions. Synthesis of 1, 2-benzoxaphosphorines and their dimers. Tetrahedron 52:12597–12612

    CAS  Google Scholar 

  48. Kostka K, Pastuszko S, Kotynski A, Budzisz E (1998) 4-Derivatives coumarin-3-phosphonic acids and esters. Phosphorus Sulfur Silicon Relat Elem 134:199–209

    Google Scholar 

  49. Takeuchi Y, Ueda N, Uesugi K, Abe H, Nishioka H, Harayama T (2003) Convenient synthesis of a simple coumarin from salicylaldehyde and Wittig reagent. IV: improved synthetic method of substituted coumarins. Heterocycles 59:217–224

    CAS  Google Scholar 

  50. Zhou P, Jiang YJ, Zou JP, Zhang W (2012) Manganese (III) acetate mediated free-radical phosphonylation of flavones and coumarins. Synthesis 44:1043–1050

    CAS  Google Scholar 

  51. Mi X, Huang M, Zhang J, Wang C, Wu Y (2013) Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C–H functionalization. Org Lett 15:6266–6269

    CAS  PubMed  Google Scholar 

  52. Yuan JW, Li YZ, Yang LR, Mai WP, Mao P, Xiao YM, Qu LB (2015) Silver-catalyzed direct Csp2-H radical phosphorylation of coumarins with H-phosphites. Tetrahedron 71:8178–8186

    CAS  Google Scholar 

  53. Gao Y, Tang G, Zhao Y (2017) Recent progress toward organophosphorus compounds based on phosphorus-centered radical difunctionalizations, phosphorus, sulfur, and silicon and the related elements. Phosphorus Sulfur Silicon Relat Elem 192(6):589–596

    CAS  Google Scholar 

  54. Dudkina YB, Gryaznova TV, Sinyashin OG, Budnikova YH (2015) Ligand-directed electrochemical functionalization of C (sp 2)—H bonds in the presence of the palladium and nickel compounds. Russ Chem Bull 64:1713–1725

    CAS  Google Scholar 

  55. Gryaznova T, Dudkina Y, Khrizanforov M, Sinyashin O, Kataeva O, Budnikova Y (2015) Electrochemical properties of diphosphonate-bridged palladacycles and their reactivity in arene phosphonation. J Solid State Electrochem 19:2665–2672

    CAS  Google Scholar 

  56. Gryaznova TV, Dudkina YB, Islamov DR, Kataeva ON, Sinyashin OG, Vicic DA, Budnikova Y (2015) Pyridine-directed palladium-catalyzed electrochemical phosphonation of C(sp2)–H bond. J Organomet Chem 785:68–71

    Google Scholar 

  57. Dudkina YB, Gryaznova TV, Kataeva ON, Budnikova YH, Sinyashin OG (2014) Electrochemical CH phosphorylation of 2-phenylpyridine in the presence of palladium salts. Russ Chem Bull 63:2641–2646

    CAS  Google Scholar 

  58. Khrizanforov MN, Strekalova SO, Gryaznova TV, Khrizanforova VV, Budnikova YH (2015) New method of metal-induced oxidative phosphorylation of benzene. Russ Chem Bull 64:1926–1932

    CAS  Google Scholar 

  59. Jutand A (2008) Contribution of electrochemistry to organometallic catalysis. Chem Rev 108:2300–2347

    CAS  PubMed  Google Scholar 

  60. Budnikova YH (2002) Metal complex catalysis in organic electrosynthesis. Russ Chem Rev 71:111–139

    CAS  Google Scholar 

  61. Budnikova YH, Yakhvarov DG, Kargin YM (1997) Arylation and alkylation of white phosphorus in the presence of electrochemically generated nickel (0) complexes. Mendeleev Commun 7:67–68

    Google Scholar 

  62. Budnikova YH, Kargin YM, Perichon J, Nedelec JY (1999) Nickel-catalysed electrochemical coupling between mono-or di-chlorophenylphosphines and aryl or heteroaryl halides. J Organomet Chem 575:63–66

    CAS  Google Scholar 

  63. Klein A, Budnikova YH, Sinyashin OG (2007) Electron transfer in organonickel complexes of α-diimines: versatile redox catalysts for C–C or C–P coupling reactions–a review. J Organomet Chem 692:3156–3166

    CAS  Google Scholar 

  64. Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R (2010) Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 12:2099–2119

    CAS  Google Scholar 

  65. Yoshida J, Kataoka K, Horcajada R, Nagaki A (2008) Modern strategies in electroorganic synthesis. Chem Rev 108:2265–2299

    CAS  PubMed  Google Scholar 

  66. Fuchigami T, Atobe M, Inagi S (2014) Fundamentals and applications of organic electrochemistry: synthesis, materials, devices. Wiley, Chichester

    Google Scholar 

  67. Milyukov VA, Budnikova YH, Sinyashin OG (2005) Organic chemistry of elemental phosphorus. Russ Chem Rev 74:781–805

    CAS  Google Scholar 

  68. Dudkina YB, Khrizanforov MN, Gryaznova TV, Budnikova YH (2014) Prospects of synthetic electrochemistry in the development of new methods of electrocatalytic fluoroalkylation. J Organomet Chem 751:301–305

    CAS  Google Scholar 

  69. Dudkina YB, Mikhaylov DY, Gryaznova TV, Tufatullin AI, Kataeva ON, Vicic DA, Budnikova YH (2013) Electrochemical ortho functionalization of 2-phenylpyridine with perfluorocarboxylic acids catalyzed by palladium in higher oxidation states. Organometallics 32:4785–4792

    CAS  Google Scholar 

  70. Dudkina YB, Mikhaylov DY, Gryaznova TV, Sinyashin OG, Vicic DA, Budnikova YH (2012) MII/MIII-catalyzed ortho-fluoroalkylation of 2-phenylpyridine. Eur J Org Chem 2012:2114–2117

    CAS  Google Scholar 

  71. Khrizanforov M, Gryaznova T, Sinyashin O, Budnikova Y (2012) Aromatic perfluoroalkylation with metal complexes in electrocatalytic conditions. J Organomet Chem 718:101–104

    CAS  Google Scholar 

  72. Dudkina YB, Gryaznova TV, Osin YN, Salnikov VV, Davydov NA, Fedorenko SV, Mustafina AR, Vicic DA, Sinyashin OG, Budnikova YH (2015) Nanoheterogeneous catalysis in electrochemically induced olefin perfluoroalkylation. Dalton Trans 44:8833–8838

    CAS  PubMed  Google Scholar 

  73. Khrizanforov M, Strekalova S, Khrizanforova V, Grinenko V, Kholin K, Kadirov M, Burganov T, Gubaidullin A, Gryaznova T, Sinyashin O, Xu L, Vicic DA, Budnikova Y (2015) Iron-catalyzed electrochemical C–H perfluoroalkylation of arenes. Dalton Trans 44:19674–19681

    CAS  PubMed  Google Scholar 

  74. Mikhaylov D, Gryaznova T, Dudkina Y, Khrizanphorov M, Latypov S, Kataeva O, Vicic DA, Sinyashin OG, Budnikova Y (2012) Electrochemical nickel-induced fluoroalkylation: synthetic, structural and mechanistic study. Dalton Trans 41:165–172

    CAS  PubMed  Google Scholar 

  75. Khrizanforov MN, Fedorenko SV, Strekalova SO, Kholin KV, Mustafina AR, Zhilkin MY, Khrizanforova VV, Osin YN, Salnikov VV, Gryaznova TV, Budnikova YH (2016) Ni (iii) complex stabilized by silica nanoparticles as an efficient nanoheterogeneous catalyst for oxidative C–H fluoroalkylation. Dalton Trans 45:11976–11982

    CAS  PubMed  Google Scholar 

  76. Dudkina YB, Kholin KV, Gryaznova TV, Islamov DR, Kataeva ON, Rizvanov IK, Levitskaya AI, Fominykh OD, Balakina MY, Sinyashin OG, Budnikova YH (2017) Redox trends in cyclometalated palladium (II) complexes. Dalton Trans 46:165–177

    CAS  Google Scholar 

  77. Mikhaylov DY, Budnikova YH, Gryaznova TV, Krivolapov DV, Litvinov IA, Vicic DA, Sinyashin OG (2009) Electrocatalytic fluoroalkylation of olefins. J Organomet Chem 694:3840–3843

    CAS  Google Scholar 

  78. Wei D, Zhu X, Niu JL, Song MP (2016) High-valent-cobalt-catalyzed C–H functionalization based on concerted metalation–deprotonation and single-electron-transfer mechanisms. ChemCatChem 8:1242–1263

    CAS  Google Scholar 

  79. Pellissier H, Clavier H (2014) Enantioselective cobalt-catalyzed transformations. Chem Rev 114:2775–2823

    CAS  PubMed  Google Scholar 

  80. Tilly D, Dayaker G, Bachu P (2014) Cobalt mediated C–H bond functionalization: emerging tools for organic synthesis. Catal Sci Technol 4:2756–2777

    CAS  Google Scholar 

  81. Cahiez G, Moyeux A (2010) Cobalt-catalyzed cross-coupling reactions. Chem Rev 110:1435–1462

    CAS  PubMed  Google Scholar 

  82. Hess W, Treutwein J, Hilt G (2008) Cobalt-catalysed carbon-carbon bond-formation reactions. Synthesis 22:3537–3562

    Google Scholar 

  83. Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, McElroy CR, Sherwood J (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:1–7

    Google Scholar 

  84. Arends I, Sheldon R, Hanefeld U (2007) Green chemistry and catalysis. Wiley, Weinheim

    Google Scholar 

  85. Kemeling GM (2012) Solvent choices and sustainable chemistry. ChemSusChem 5:2291–2292

    CAS  PubMed  Google Scholar 

  86. Izutsu K (2009) Electrochemistry in nonaqueous solutions, 2nd edn. Wiley, Weinheim

    Google Scholar 

  87. Luca OR, Gustafson JL, Maddox SM, Fenwicka AQ, Smith DC (2015) Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry. Org Chem Front 2:823–848

    CAS  Google Scholar 

  88. Polleux L, Labbé E, Buriez O, Périchon J (2005) CoI- and Co0-bipyridine complexes obtained by reduction of CoBr2bpy: electrochemical behaviour and investigation of their reactions with aromatic halides and vinylic acetates. Chem Eur J 11:4678–4686

    CAS  PubMed  Google Scholar 

  89. Gomes P, Gosmini C, Nédélec J-Y, Périchon J (2000) Cobalt bromide as catalyst in electrochemical addition of aryl halides onto activated olefins. Tetrahedron Lett 41:3385–3388

    CAS  Google Scholar 

  90. Budnikova YG, Kafiyatullina AG, Kargin YM, Sinyashin OG (2003) Electrochemical reduction of cobalt and nickel complexes with ligands stabilizing metal in low oxidation state. Russ Chem Bull 52:1504–1511

    CAS  Google Scholar 

  91. Budnikova YG, Kafiyatullina AG, Kargin YM, Sinyashin OG (2001) Kinetic regularities of electrochemical reduction of organic halides under the action of cobalt complexes with 2,2′-bipyridine. Russ J Gen Chem 71:231–233

    CAS  Google Scholar 

  92. Buettner GR (1987) Spin trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biol Med 3:259–303

    CAS  Google Scholar 

  93. Haire LD, Krygsman PH, Janzen EG, Oehler UM (1988) Correlation of radical structure with EPR spin adduct parameters: utility of the proton, carbon-13, and nitrogen-14 hyperfine splitting constants of aminoxyl adducts of PBN-nitronyl-13C for three-parameter scatter plots. J Org Chem 53:4535–4542

    CAS  Google Scholar 

  94. Sheberla D, Tumanskii B, Tomasik AC, Mitra A, Hill NJ, West R, Apeloig Y (2010) Different electronic structure of phosphonyl radical adducts of N-heterocyclic carbenes, silylenes and germylenes: EPR spectroscopic study and DFT calculations. Chem Sci 1:234–241

    CAS  Google Scholar 

  95. Tumanskii B, Sheberla D, Molev G, Apeloig Y (2007) Dual character of arduengo carbene–radical adducts: addition versus coordination product. Angew Chem Int Ed 46:7408–7411

    CAS  Google Scholar 

  96. Hoffman R (2007) Phosphorus-31 NMR. Hebrew University, Jerusalem

    Google Scholar 

  97. Tang S, Liu Y, Lei A (2018) Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation cell. Chem 4(1):27–45

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation No. 14-23-00016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Khrizanforov.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrizanforov, M., Strekalova, S., Khrizanforova, V. et al. Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/P-H Coupling Reactions. Top Catal 61, 1949–1956 (2018). https://doi.org/10.1007/s11244-018-1014-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1014-2

Keywords

Navigation