Skip to main content
Log in

Vanadium Complexes Based Polymer Supported Catalysts: A Brief Account of Research from Our Group

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Solid supported catalysts can go a long way in developing catalyst based technology because of their high efficiency with recyclability and easy separation from the reaction mixture. Immobilizations of homogeneous catalysts through covalent bond with chloromethylated polystyrene cross-linked with divinylbenzene and develop them as environmentally safe heterogeneous catalysts for oxidation reaction have attracted attention in recent years. Recently, effort from our research laboratory was to synthesize new recyclable polymer-supported vanadium complexes based heterogeneous catalysts. Thus, chloromethylated polystyrene cross linked with 5% divinylbenzene was used as support to prepare variety of polymer supported vanadium catalysts. These catalysts have successfully been used for the oxidation and oxidative bromination of various organic substrates. Keeping in mind the industrial usage of these heterogeneous catalysts, the leaching and recycle ability of all polymer-supported catalysts have also been tested. Most catalysts are stable and do not leach during the catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

PS–CH2–Cl:

Chloromethylated polystyrene cross-linked with divinyl benzene

PS–im:

Imidazolomethylpolystyrene

Hhebmz:

2-Hydroxyethylbenzimidazole

Hhmbmz:

2-Hydroxymethylbenzimidazole

Hhpbmz:

2-(2-Hydroxyphenyl)benzimidazole

2-pybmz:

2-(2-Pyridyl)benzimidazole

3-pybmz:

2-(3-Pyridyl)benzimidazole

Hpan:

1-(2-Pyridylazo)-2-naphthol

H2fsal–β-ala:

Schiff base derived from 3-formylsalicylic acid and β-alanine

H2fsal–DL-ala:

Schiff base derived from 3-formylsalicylic acid and DL-alanine

H2fsal–L-ile:

Schiff base derived from 3-formylsalicylic acid and isoleucine

H2sal–his:

Schiff base derived from salicylaldehyde and histidine

H2sal–cis:

Schiff base derived from salicylaldehyde and cysteine

H2fsal–amp:

Schiff base derived from 3-formylsalicylic acid and 2-amino-2-methylpropanol

H2fsal–dmen:

Schiff base derived from 3-formylsalicylic acid and N,N-dimethyl ethylenediamine

H2fsal–aepy:

Schiff base derived from 3-formylsalicylic acid and 2-aminoethylpyridine

H2fsal–pa:

Schiff base derived from 3-formylsalicylic acid and 3-aminopropanol

H2fsal–ea:

Schiff base derived from 3-formylsalicylic acid and 2-aminoethanol

H2sal–iah:

Schiff base derived from salicylaldehyde and indole-3-acetic hydrazide,

H2sal–bhz:

Schiff base derived from salicylaldehyde and benzoylhydrazide

H2sal–inh:

Schiff base derived from salicylaldehyde and isonicotinoylhydrazide

H2sal–ohyba:

Schiff base derived from salicylaldehyde and o-hydroxybenzylamine

Hacpy–bhz:

Schiff base derived from acetylpyridine and benzoylhydrazide

Hacpy–nah:

Schiff base derived from acetylpyridine and nicotinoylhydrazide

Hacpy–inh:

Schiff base derived from acetylpyridine and isonicotinoylhydrazide

Hacpy–fah:

Schiff base derived from acetylpyridine and 2-furoylhydrazide

Hbzpy–bhz:

Schiff base derived from benzoylpyridine and benzoylhydrazide

Hbzpy–nah:

Schiff base derived from benzoylpyridine and nicotinoylhydrazide

Hbzpy–inh:

Schiff base derived from benzoylpyridine and isonicotinoylhydrazide

H2salten:

Schiff base derived from salicylaldehyde and diethylenetriamine

H3sal–dahp:

Schiff base derived from salicylaldehyde and 1,3-diamino-2-hydroxypropane

References

  1. Clark JH, Macquarrie DJ (1997) Org Process Res Dev 1:149–162

    Article  CAS  Google Scholar 

  2. Maurya MR, Kumar A, Pessoa JC (2011) Coord Chem Rev 255:2315–2344

    Article  CAS  Google Scholar 

  3. Trilla M, Pleixats R, Man MWC, Bied C, Moreau JJE (2008) Adv Synth Catal 350:577–590

    Article  CAS  Google Scholar 

  4. Jain SL, Rana BS, Singh B, Sinha AK, Bhaumik A, Nandi M, Sain B (2010) Green Chem 12:374–377

    Article  CAS  Google Scholar 

  5. Joseph T, Deshpande SS, Halligudi SB, Vinu A, Ernst S, Hartmann M (2003) J Mol Catal A 206:13–21

    Article  CAS  Google Scholar 

  6. Joseph T, Halligudi SB (2005) J Mol Catal A 229:241–247

    Article  CAS  Google Scholar 

  7. Wang R, Gao B, Jiao W (2009) Appl Surf Sci 255:4109–4113

    Article  CAS  Google Scholar 

  8. Moghadam M, Tangestaninejad S, Mirkhani V, Baltork IM, Mirbagheri NS (2010) J Organomet Chem 695:2014–2021

    Article  CAS  Google Scholar 

  9. Parihar S, Pathan S, Jadeja RN, Patel A, Gupta VK (2012) Inorg Chem 51:1152–1161

    Article  CAS  PubMed  Google Scholar 

  10. Merrifield RB (1963) J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  11. Seebach D, Marti RE, Hintermann T (1996) Helv Chim Acta 79:1710–1740

    Article  CAS  Google Scholar 

  12. Hinzen B, Ley SV (1997) J Chem Soc Perkin Trans (1) 13:1907–1908

    Article  Google Scholar 

  13. Maurya MR (2012) Curr Org Chem 16:73–88

    Article  CAS  Google Scholar 

  14. Maurya MR, Pessoa JC (2011) J Organomet Chem 696:244–254

    Article  CAS  Google Scholar 

  15. Pessoa JC, Maurya MR (2017) Inorg Chim Acta 455:415–428

    Article  CAS  Google Scholar 

  16. Ramaswamy AV (2002) In: Viswanathan B, Sivasanker S, Ramaswamy AV (eds) Catalysis: principles and applications. Narosa Publishing House, New Delhi, pp 206–219

    Google Scholar 

  17. Sherrington DC (2000) Catal Today 57:87–104

    Article  CAS  Google Scholar 

  18. Sherrington DC (1988) Pure Appl Chem 60:401–414

    Article  CAS  Google Scholar 

  19. Arnold U (2008) Metal species supported on organic polymers as catalysts for the epoxidation of alkenes. In: Mechanisms in homogeneous and heterogeneous epoxidation. Catalysis. Elsevier B.V, Amsterdam, pp 387–411

    Chapter  Google Scholar 

  20. Sherrington DC, Simpson S (1991) J Catal 131:115–126

    Article  CAS  Google Scholar 

  21. Sherrington DC, Simpson S (1993) React Polym 19:13–25

    Article  CAS  Google Scholar 

  22. McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275–3299

    Article  CAS  PubMed  Google Scholar 

  23. Leadbeater NE, Marco M (2002) Chem Rev 102:3217–3273

    Article  CAS  PubMed  Google Scholar 

  24. Gupta KC, Sutar AK, Lin C-C (2009) Coord Chem Rev 253:1926–1946

    Article  CAS  Google Scholar 

  25. Walmsley RS, Hlangothi P, Litwinski C, Nyokong T, Torto N, Tshentu ZR (2013) J Appl Polym Sci 127:4719–4725

    Article  CAS  Google Scholar 

  26. Walmsley RS, Litwinski C, Antunes E, Hlangothi P, Hosten E, McCleland C, Nyokong T, Torto N, Tshentu ZR (2013) J Mol Catal A 379:94–102

    Article  CAS  Google Scholar 

  27. Salunke SB, Babu NS, Chen CT (2011) Adv Synth Catal 353:1234–1240

    Article  CAS  Google Scholar 

  28. Boruah JJ, Kalita D, Das SP, Paul S, Islam NS (2011) Inorg Chem 50:8046–8062

    Article  CAS  PubMed  Google Scholar 

  29. Walmsley RS, Ogunlaja AS, Coombes MJ, Chidawanyika W, Litwinski C, Torto N, Nyokong T, Tshentu ZR (2012) J Mater Chem 22:5792–5800

    Article  CAS  Google Scholar 

  30. Ogunlaja AS, Khene S, Antunes E, Nyokong T, Torto N, Tshentu ZR (2013) Appl Catal A 462:157–167

    Article  CAS  Google Scholar 

  31. Silva TFS, MacLeod TCO, Martins LMDRS., da Silva MFCG., Schiavon MA, Pombeiro AJL (2013) J Mol Catal A 367:52–60

    Article  CAS  Google Scholar 

  32. Islam SM, Molla RA, Roy AS, Ghosh K, Salam N, Iqubal MA, Tuhina K (2014) J Organomet Chem 761:169–178

    Article  CAS  Google Scholar 

  33. Esteves MA, Gigante B, Santos C, Guerreiro AM, Baleizão C (2013) Catal Today 218:65–69

    Article  CAS  Google Scholar 

  34. Syamal A, Singh MM (1993) React Polym 21:149–158

    Article  CAS  Google Scholar 

  35. Maurya MR, Sikarwar S (2007) Catal Commun 8:2017–2024

    Article  CAS  Google Scholar 

  36. Maurya MR, Kumar U, Manikandan P (2006) Dalton Trans 3561–3575

  37. Maurya MR, Kumar N (2014) J Mol Catal A 383:172–181

    Article  CAS  Google Scholar 

  38. Maurya MR, Kumar N, Chaudhary N (2015) Polyhedron 97:103–111

    Article  CAS  Google Scholar 

  39. Maurya MR, Chaudhary N, Avecilla F, Correia I (2015) J Inorg Biochem 147:181–192

    Article  CAS  PubMed  Google Scholar 

  40. Maurya MR, Kumar M, Sikarwar S (2008) Catal Commun 10:187–191

    Article  CAS  Google Scholar 

  41. Maurya MR, Sikarwar S, Joseph T, Manikandan P, Halligudi SB (2005) React Funct Polym 63:71–83

    Article  CAS  Google Scholar 

  42. Maurya MR, Sikarwar S, Manikandan P (2006) Appl Catal A 315:74–82

    Article  CAS  Google Scholar 

  43. Maurya MR, Kumar M, Kumar U (2007) J Mol Catal A 273:133–143

    Article  CAS  Google Scholar 

  44. Maurya MR, Kumar M, Kumar A, Pessoa JC (2008) Dalton Trans 4220–4232

  45. Maurya MR, Sikarwar S (2007) J Mol Catal A 263:175–185

    Article  CAS  Google Scholar 

  46. Maurya MR, Kumar U, Manikandan P (2007) Eur J Inorg Chem 2007:2303–2314

    Article  CAS  Google Scholar 

  47. Maurya MR, Kumar U, Correia I, Adão P, Pessoa JC (2008) Eur J Inorg Chem 2008:577–587

    Article  CAS  Google Scholar 

  48. Maurya MR, Arya A, Kumar U, Kumar A, Avecilla F, Pessoa JC (2009) Dalton Trans 9555–9566

  49. Maurya MR, Arya A, Kumar A, Pessoa JC (2009) Dalton Trans 2185–2195

  50. Maurya MR, Arya A, Kumar A, Kuznetsov ML, Avecilla F, Pessoa JC (2010) Inorg Chem 49:6586–6600

    Article  CAS  PubMed  Google Scholar 

  51. Maurya MR, Chaudhary N, Kumar A, Avecilla F, Pessoa JC (2014) Inorg Chim Acta 420:24–38

    Article  CAS  Google Scholar 

  52. Maurya MR, Chaudhary N, Avecilla F (2014) Polyhedron 67:436–448

    Article  CAS  Google Scholar 

  53. Maurya MR, Uprety B, Chaudhary N, Avecilla F (2015) Inorg Chim Acta 434:230–238

    Article  CAS  Google Scholar 

  54. Maurya MR, Chaudhary N, Avecilla F, Adão P, Pessoa JC (2015) Dalton Trans 44:1211–1232

    Article  CAS  PubMed  Google Scholar 

  55. Maurya MR, Kumar M, Sikarwar S (2006) React Funct Polym 66:808–818

    Article  CAS  Google Scholar 

  56. Müller TE, Beller M (1998) Chem Rev 98:675–703

    Article  PubMed  Google Scholar 

  57. Maurya MR, Arya A, Adão P, Pessoa JC (2008) Appl Catal A 351:239–252

    Article  CAS  Google Scholar 

  58. Hulea V, Dumitriu E (2004) Appl Catal A 277:99–106

    Article  CAS  Google Scholar 

  59. Li K, Frost JW (1998) J Am Chem Soc 120:10545–10546

    Article  CAS  Google Scholar 

  60. Venkitasubramanian P, Daniels L, Das S, Lamm AS, Rosazza JPN (2008) Enzym Microb Technol 42:130–137

    Article  CAS  Google Scholar 

  61. Li T, Rosazza JPN (2000) Appl Environ Microbiol 66:684–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Priefert H, Rabenhorst J, Steinbüchel A (2001) Appl Microbiol Biotechnol 56:296–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. R. M. thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi for financial support of the work (Grant Number EMR/2014/000529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannar R. Maurya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, M.R. Vanadium Complexes Based Polymer Supported Catalysts: A Brief Account of Research from Our Group. Top Catal 61, 1500–1513 (2018). https://doi.org/10.1007/s11244-018-1006-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1006-2

Keywords

Navigation