Skip to main content

Advertisement

Log in

How Au Outperforms Pt in the Catalytic Reduction of Methane Towards Ethane and Molecular Hydrogen

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Within the context of a “hydrogen economy”, it is paramount to guarantee a stable supply of molecular hydrogen to devices such as fuel cells. Besides, catalytic conversion of the environmentally harmful methane into ethane, which has a significantly lower Global Warming Potential, is an important endeavour. Herein we propose a novel proof-of-concept mechanism to accomplish both tasks simultaneously. We provide transition-state barriers and reaction Helmholtz free energies obtained from first-principles Density Functional Theory by taking account vibrations for \(2\hbox {CH}_4(\hbox {g}) \rightarrow \hbox {C}_2\hbox {H}_6(\hbox {g}) + \hbox {H}_2(\hbox {g})\) to show that \(\hbox {H}_2\) can be produced by subnanometer \(\hbox {Pt}_{38}\) and \(\hbox {Au}_{38}\) nanoparticles. The active sites for the reaction are located on different planes on the two nanoparticles, thus differentiating the working principle of the two metals. The complete cycle to reduce \(\hbox {CH}_4\) can be performed on Au and Pt with similar efficiencies, but Au requires only half the working temperature of Pt. This sizable decrease of temperature can be traced back to several intermediate steps, in excellent agreement with previous experiments, but most crucially to the final one where the catalyst must be cleaned from H(\(\star\)) to be able to restart the catalytic cycle. This highlights the importance of including in catalytic models the final cleaning steps. In addition, this case study provides guidelines to capitalize on finite-size effects for the design of new and more efficient nanoparticle catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Achenbach E, Riensche E (1994) J Power Sources 52(2):283. https://doi.org/10.1016/0378-7753(94)02146-5. http://www.sciencedirect.com/science/article/pii/0378775394021465

  2. Larsen JH, Chorkendorff I (1999) Surf Sci Rep 35(58):163. https://doi.org/10.1016/S0167-5729(99)00009-6. http://www.sciencedirect.com/science/article/pii/S0167572999000096

  3. Juurlink L, Killelea D, Utz A (2009) Prog Surf Sci 84(34):69. https://doi.org/10.1016/j.progsurf.2009.01.001. http://www.sciencedirect.com/science/article/pii/S0079681609000021

  4. Utz AL (2009) Curr Opin Solid State Mater Sci 13(12):4. https://doi.org/10.1016/j.cossms.2009.01.004. http://www.sciencedirect.com/science/article/pii/S1359028609000059

  5. Han D, Nave S, Jackson B (2013) J Phys Chem A 117(36):8651. https://doi.org/10.1021/jp402987w

    Article  CAS  PubMed  Google Scholar 

  6. Anghel AT, Wales DJ, Jenkins SJ, King DA (2005) Phys Rev B 71:113410. https://doi.org/10.1103/PhysRevB.71.113410

    Article  CAS  Google Scholar 

  7. Bengaard H, Nørskov J, Sehested J, Clausen B, Nielsen L, Molenbroek A, Rostrup-Nielsen J (2002) J Catal 209(2):365. https://doi.org/10.1006/jcat.2002.3579. http://www.sciencedirect.com/science/article/pii/S0021951702935797

  8. Juurlink LBF, McCabe PR, Smith RR, DiCologero CL, Utz AL (1999) Phys Rev Lett 83:868. https://doi.org/10.1103/PhysRevLett.83.868

    Article  CAS  Google Scholar 

  9. Calle-Vallejo F, Martínez JI, García-Lastra JM, Sautet P, Loffreda D (2014) Angew Chem Int Ed 53(32):8316. https://doi.org/10.1002/anie.201402958

    Article  CAS  Google Scholar 

  10. Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dułak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141(8):1067. https://doi.org/10.1007/s10562-011-0632-0

    Article  CAS  Google Scholar 

  11. Viñes F, Gomes JRB, Illas F (2014) Chem Soc Rev 43:4922. https://doi.org/10.1039/C3CS60421G

    Article  PubMed  Google Scholar 

  12. Calle-Vallejo F, Sautet P, Loffreda D (2014) J Phys Chem Lett 5(18):3120. https://doi.org/10.1021/jz501263e

    Article  CAS  PubMed  Google Scholar 

  13. Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS (2015) Science 350(6257):185. https://doi.org/10.1126/science.aab3501. http://science.sciencemag.org/content/350/6257/185

  14. Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Science 326(5953):716. https://doi.org/10.1126/science.1174760. http://science.sciencemag.org/content/326/5953/716

  15. Pachauri RK, Reisinger A (2007) IPCC fourth assessment report: climate change 2007 (AR4). Intergovernmental panel on climate change. http://www.ipcc.ch

  16. Aydin M, Verhulst KR, Saltzman ES, Battle MO, Montzka SA, Blake DR, Tang Q, Prather MJ (2011) Nature 476(7359):198. https://doi.org/10.1038/nature10352

    Article  CAS  PubMed  Google Scholar 

  17. Daniels L (1984) Trends Biotechnol 2(4):91. https://doi.org/10.1016/S0167-7799(84)80004-9. http://www.sciencedirect.com/science/article/pii/S0167779984800049

  18. McCollom T (2012) Proc Natl Acad Sci 109(49):E3334. https://doi.org/10.1073/pnas.1214629109. http://www.pnas.org/content/109/49/E3334.short

  19. Tsang W, Hampson RF (1986) J Phys Chem Ref Data 15(3):1087. https://doi.org/10.1063/1.555759

    Article  CAS  Google Scholar 

  20. Lee JH, Trimm DL (1995) Fuel Process Technol 42(2):339. https://doi.org/10.1016/0378-3820(94)00091-7. http://www.sciencedirect.com/science/article/pii/0378382094000917

  21. Läuter A, Lee K, Jung K, Vatsa R, Mittal J, Volpp HR (2002) Chem Phys Lett 358(34):314. https://doi.org/10.1016/S0009-2614(02)00625-5. http://www.sciencedirect.com/science/article/pii/S0009261402006255

  22. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys: Condens Matter 21(39):395502. http://stacks.iop.org/0953-8984/21/i=39/a=395502

  23. Grimme S (2006) J Comput Chem 27(15):1787. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  24. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114(12):5149. https://doi.org/10.1063/1.1329889

    Article  CAS  Google Scholar 

  25. Dunitz JD, Gavezzotti A (1999) Acc Chem Res 32(8):677. https://doi.org/10.1021/ar980007+

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  PubMed  Google Scholar 

  27. Kresse G, Joubert D (1999) Phys Rev B 59:1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  28. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616. https://doi.org/10.1103/PhysRevB.40.3616

    Article  CAS  Google Scholar 

  29. Berne BJ, Cicotti G, Coker DF (eds) (1998) Classical and quantum dynamics in condensed phase simulations. World Scientific Publishing Company. http://www.librarything.com/isbn/9810234988

  30. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978. https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

  31. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901. https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  32. Kardar M (2007) Statistical physics of fields. Cambridge University Press, New York

    Book  Google Scholar 

  33. Hill TL (1987) Statistical thermodynamics. Dover, New York

    Google Scholar 

  34. Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher F (2007) J Am Chem Soc 129(20):6485. https://doi.org/10.1021/ja0700855

    Article  CAS  PubMed  Google Scholar 

  35. Ding K, Gulec A, Johnson AM, Schweitzer NM, Stucky GD, Marks LD, Stair PC (2015) Science 350(6257):189. https://doi.org/10.1126/science.aac6368. http://science.sciencemag.org/content/350/6257/189

  36. Andersson KJ, Calle-Vallejo F, Rossmeisl J, Chorkendorff I (2009) J Am Chem Soc 131(6):2404. https://doi.org/10.1021/ja8089087

    Article  CAS  PubMed  Google Scholar 

  37. Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) J Phys Chem B 109(47):22212. https://doi.org/10.1021/jp0555448

    Article  CAS  PubMed  Google Scholar 

  38. Perez-Alonso FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I (2012) Angew Chem Int Ed 51(19):4641. https://doi.org/10.1002/anie.201200586

    Article  CAS  Google Scholar 

  39. Wang X, Yu JC, Yip HY, Wu L, Wong PK, Lai SY (2005) Chem A 11(10):2997. https://doi.org/10.1002/chem.200401248

    Article  CAS  Google Scholar 

  40. Thompson DT (2007) Nano Today 2(4):40. https://doi.org/10.1016/S1748-0132(07)70116-0. http://www.sciencedirect.com/science/article/pii/S1748013207701160

  41. Masatake H, Tetsuhiko K, Hiroshi S, Nobumasa Y (1987) Chem Lett 16(2):405. https://doi.org/10.1246/cl.1987.405

    Article  Google Scholar 

  42. Falsig H, Hvolbæk B, Kristensen I, Jiang T, Bligaard T, Christensen C, Nørskov J (2008) Angew Chem Int Ed 47(26):4835. https://doi.org/10.1002/anie.200801479

    Article  CAS  Google Scholar 

  43. Calle-Vallejo F, Huang M, Henry JB, Koper MTM, Bandarenka AS (2013) Phys Chem Chem Phys 15:3196. https://doi.org/10.1039/C2CP44620K

    Article  CAS  PubMed  Google Scholar 

  44. Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) J Am Chem Soc 132(35):12170. https://doi.org/10.1021/ja1036572

    Article  CAS  PubMed  Google Scholar 

  45. Fromm E (1998) Poisoning of hydrogen reactions. Springer, Berlin, pp 123–155

    Google Scholar 

  46. Thomas JP, Chopin CE (2013) Modeling of hydrogen transport in cracking metal systems. Wiley, New York, pp 223–242. https://doi.org/10.1002/9781118803363.ch21

    Book  Google Scholar 

  47. Martínez JI, Abad E, González C, Flores F, Ortega J (2012) Phys Rev Lett 108:246102. https://doi.org/10.1103/PhysRevLett.108.246102

    Article  CAS  PubMed  Google Scholar 

  48. Jiang B, Yang M, Xie D, Guo H (2016) Chem Soc Rev 45:3621. https://doi.org/10.1039/C5CS00360A

    Article  CAS  PubMed  Google Scholar 

  49. Nave S, Tiwari AK, Jackson B (2014) J Phys Chem A 118(41):9615. https://doi.org/10.1021/jp5063644

    Article  CAS  PubMed  Google Scholar 

  50. Franke JH, Kosov DS (2015) J Chem Phys 142(4):044703. https://doi.org/10.1063/1.4906151

    Article  CAS  PubMed  Google Scholar 

  51. Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapol P (2009) Nat Mater 8(3):213. https://doi.org/10.1038/nmat2384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish MINECO (Grants MAT2014-54231-C4-1-P and MAT2017-85089-C2-1-R), and the EU via the ERC-Synergy Program (Grant ERC-2013-SYG-610256 Nanocosmos) and the EU Graphene Flagship (Grant agreements 696656 Graphene Flagship-core 1 and 785219 Graphene Flagship-core 2). JIM acknowledges funding from Nanocosmos and “Ramón y Cajal” MINECO Program through Grant RYC-2015-17730, and thanks CTI-CSIC for use of computing resources. FC-V thanks “Ramón y Cajal” MINECO Program through Grant RYC-2015-18996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, J.I., Calle-Vallejo, F. & de Andrés, P.L. How Au Outperforms Pt in the Catalytic Reduction of Methane Towards Ethane and Molecular Hydrogen. Top Catal 61, 1290–1299 (2018). https://doi.org/10.1007/s11244-018-0992-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0992-4

Keywords

Navigation