Skip to main content
Log in

Ag or Au Nanoparticles Decorated Multiwalled Carbon Nanotubes Coated Carbon Paste Electrodes for Amperometric Determination of H2O2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Composite materials made of multiwalled carbon nanotubes and silver (Ag-MWCNT) or gold particles (Au-MWCNT) were synthesized and characterized by XRD and SEM/EDS techniques. The composites and the MWCNTs were applied as surface modifiers of carbon paste electrodes (CPEs). The mediator based electrocatalytic activity of the modified electrodes was investigated for H2O2 oxidation/reduction by electrochemical measurements. All voltammetric working electrodes (Ag-MWCNT/CPE, Au-MWCNT/CPE, MWCNT/CPE and the bare CPE) were characterized by cyclic voltammetry (CV) in acetate and phosphate supporting electrolytes (0.1 mol L−1, pH 4.50 and 7.50, respectively) in the absence and presence of the H2O2 analyte. Amperometric experiments were performed in stirred solutions at selected constant working potentials, in accordance with the CV responses, for developing new analytical methods for the determination of H2O2. In the case of the Ag-MWCNT/CPE the most promising working potentials in the acetate buffer solution were − 0.40 V and + 0.80 versus SCE; in phosphate buffer solution these values were between − 0.20 and − 0.30 V and from + 0.60 to + 1.0 V. The Au-MWCNT/CPE is applicable in acetate buffer supporting electrolyte in the working potential close to − 0.30 V versus SCE and from + 0.70 to + 1.0 V; in the phosphate buffer solution only from + 0.60 V versus SCE and higher values. Due to the presence of the signal enhancement effect of Au and Ag nanoparticles, the sensitivity of the obtained methods is significantly higher in comparison to the results obtained by the MWCNT/CPE and bare CPE. The relative standard deviation of the measurements was lower than 10%. The practical application using the Ag-MWCNT/CPE was shown for the determination of H2O2 in real nursing product sample. It was proven that the developed mediator based (electro)catalytic platform exhibits low detection limit, high selectivity, reproducibility and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sitnikova NA, Borisova AV, Komkova MA, Karyakin AA (2011) Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates. Anal Chem 83:2359–2363

    Article  CAS  PubMed  Google Scholar 

  2. Karam P, Halaoui LI (2008) Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Anal Chem 80:5441–5448

    Article  CAS  PubMed  Google Scholar 

  3. Sang Y, Zhang L, Li YF, Chen LQ, Xu JL, Huang CZ (2010) A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Anal Chim Acta 659:224–228

    Article  CAS  PubMed  Google Scholar 

  4. Guwy AJ, Hawkes FR, Martin SR, Hawkes DL, Cunnah P (2000) A technique for monitoring hydrogen peroxide concentration off-line and on-line. Water Res 34:2191–2198

    Article  CAS  Google Scholar 

  5. Park JH, Cho IH, Chang SW (2006) Comparison of Fenton and photo-Fenton processes for livestock wastewater treatment. J Environ Sci Health B 41:109–120

    Article  CAS  PubMed  Google Scholar 

  6. Raoof JB, Ojani R, Hasheminejad E, Rashid-Nadimi S (2012) Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix[6]arene matrix and its application for electrocatalytic reduction of H2O2. Appl Surf Sci 258:2788–2795

    Article  CAS  Google Scholar 

  7. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594:24–31

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Wang DW, Xu L, Hou HQ, You TY (2011) A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens Bioelectron 26:4585–4590

    Article  CAS  PubMed  Google Scholar 

  9. Kotzian P, Brázdilová P, Kalcher K, Vytřas K (2005) Determination of hydrogen peroxide, glucose and hypoxanthine using (bio)sensors based on ruthenium dioxide-modified screen-printed electrodes. Anal Lett 38:1099–1113

    Article  CAS  Google Scholar 

  10. Anojčić J, Guzsvány V, Vajdle O, Madarász D, Rónavári A, Kónya Z, Kalcher K (2016) Hydrodynamic chronoamperometric determination of hydrogen peroxide using carbon paste electrodes coated by multiwalled carbon nanotubes decorated with MnO2 or Pt particles. Sens Actuators B 233:83–92

    Article  CAS  Google Scholar 

  11. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  12. Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4:1948–1963

    Article  CAS  PubMed  Google Scholar 

  13. Rajabzade H, Daneshgar P, Tazikeh E, Mehrabian RZ (2012) Functionalized carbon nanotubes with gold nanoparticles to fabricate a sensor for hydrogen peroxide determination. J Chem 9:2540–2549

    CAS  Google Scholar 

  14. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193

    Article  CAS  PubMed  Google Scholar 

  15. Han KN, Li CA, Ngoc Bui M-P, Pham X-H, Kim BS, Choa YH, Seong GH (2012) Development of Pt/TiO2 nanohybrids-modified SWCNT electrode for sensitive hydrogen peroxide detection. Sens Actuators B 174:406–413

    Article  CAS  Google Scholar 

  16. Miao Z, Zhang D, Chen Q (2014) Non-enzymatic hydrogen peroxide sensors based on multi-wall carbon nanotube/Pt nanoparticle nanohybrids. Materials 7:2945–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi Q-C, Zeng W-F, Zhu Y-N (2009) Electrochemical detection of hydrogen peroxide at a waxed graphite electrode modified with platinum-decorated carbon nanotubes. J Shanghai Univ 13:63–66

    Article  CAS  Google Scholar 

  18. Fang Y, Zhang D, Qin X, Miao Z, Takahashi S, Anzai J-I, Chen Q (2012) A non-enzymatic hydrogen peroxide sensor based on poly(vinyl alcohol)–multiwalled carbon nanotubes–platinum nanoparticles hybrids modified glassy carbon electrode. Electrochim Acta 70:266–271

    Article  CAS  Google Scholar 

  19. Guzmán C, Orozco G, Verde Y, Jiménez S, Godínez LA, Juaristi E, Bustos E (2009) Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles–dopamine. Electrochim Acta 54:1728–1732

    Article  CAS  Google Scholar 

  20. Guzsvány V, Anojčić J, Radulović E, Vajdle O, Stanković I, Madarász D, Kónya Z, Kalcher K (2017) Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles. Microchim Acta 184:1987–1996

    Article  CAS  Google Scholar 

  21. Afraz A, Rafati AA, Hajian A (2013) Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode. J Solid State Electrochem 17:2017–2025

    Article  CAS  Google Scholar 

  22. Li X, Liu Y, Zheng L, Dong M, Xue Z, Lu X, Liu X (2013) A novel nonenzymatic hydrogen peroxide sensor based on silver nanoparticles and ionic liquid functionalized multiwalled carbon nanotube composite modified electrode. Electrochim Acta 113:170–175

    Article  CAS  Google Scholar 

  23. Shi Y, Liu Z, Zhao B, Sun Y, Xu F, Zhang Y, Wena Z, Yang H, Li Z (2011) Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction. J Electroanal Chem 656:29–33

    Article  CAS  Google Scholar 

  24. Zhao W, Wang H, Qin X, Wang X, Zhao Z, Miao Z, Chen L, Shan M, Fang Y, Chen Q (2009) A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 80:1029–1033

    Article  CAS  PubMed  Google Scholar 

  25. Narang J, Chauhan N, Pundir CS (2011) A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode. Analyst 136:4460–4466

    Article  CAS  PubMed  Google Scholar 

  26. Lin C-Y, Lai Y-H, Balamurugan A, Vittal R, Lin C-W, Ho K-C (2010) Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta 82:340–347

    Article  CAS  PubMed  Google Scholar 

  27. Guascito MR, Filippo E, Malitesta C, Manno D, Serra A, Turco A (2008) A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosens Bioelectron 24:1057–1063

    Article  CAS  Google Scholar 

  28. Habibi B, Jahanbakhshi M, Pournaghi-Azar MH (2012) Voltammetric and amperometric determination of hydrogen peroxide using a carbon-ceramic electrode modified with a nanohybrid composite made from single-walled carbon nanotubes and silver nanoparticles. Microchim Acta 177:185–193

    Article  CAS  Google Scholar 

  29. Xin F, Li L (2011) Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Compos A 42:961–967

    Article  CAS  Google Scholar 

  30. Niesz K, Siska A, Vesselényi I, Hernádi K, Méhn D, Galbács G, Kónya Z, Kiricsi I (2002) Mechanical and chemical breaking of multiwalled carbon nanotubes. Catal Today 76:3–10

    Article  CAS  Google Scholar 

  31. Fási A, Pálinkó I, Seo JW, Kónya Z, Hernadi K, Kiricsi I (2003) Sonication assisted gold deposition on multiwall carbon nanotubes. Chem Phys Lett 372:848–852

    Article  CAS  Google Scholar 

  32. Billing BK, Agnihotri PK, Singh N (2017) Fabrication of branched nanostructures for CNT@Ag nano-hybrids: application in CO2 gas detection. J Mater Chem C 5:4226–4235

    Article  Google Scholar 

  33. Švancara I, Metelka R, Vytřas K (2005) Piston-driven carbon paste electrode holder for electrochemical measurements. In: Vytřas K, Kalcher K (eds) Sensing in electroanalysis, vol 1. University of Pardubice, Pardubice

    Google Scholar 

  34. Endo M, Takeuchi K, Hiraoka T, Furuta T, Kasai T, Sun X, Kiang HC, Dresselhaus SM (1997) Stacking nature of graphene layers in carbon nanotubes and nanofibers. J Phys Chem Solids 58:1707–1712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Science and Technological Development of the Republic of Serbia (ON172059 and ON172012), the Hungarian GINOP-2.3.2-15-2016-00013 project, the CEEPUS CIII-CZ-0212-09-1516 network and the Hungarian Scientific Research Fund (OTKA K120115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valéria Guzsvány or Zoltán Kónya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzsvány, V., Vajdle, O., Gurdeljević, M. et al. Ag or Au Nanoparticles Decorated Multiwalled Carbon Nanotubes Coated Carbon Paste Electrodes for Amperometric Determination of H2O2. Top Catal 61, 1350–1361 (2018). https://doi.org/10.1007/s11244-018-0986-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0986-2

Keywords

Navigation