Skip to main content
Log in

CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ni/SiC and Ni/SiO2 catalysts prepared by both wet impregnation (WI) and deposition–precipitation (DP) methods were compared for CO and CO2 methanation. The prepared catalysts were characterized using N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), H2 chemisorption, pulsed CO2 chemisorption, temperature-programmed desorption of CO2 (CO2-TPD), transmission electron microscopy, and X-ray diffraction. H2-TPR analysis revealed that the catalysts prepared by DP exhibit stronger interaction between the nickel oxides and support than those prepared by WI. The former catalysts exhibit higher Ni dispersions than the latter. The catalytic activities for both reactions over Ni/SiC and Ni/SiO2 catalysts prepared by WI increase on increasing the Ni content from 10 to 20 wt%. The Ni/SiC catalyst prepared by DP shows higher catalytic activity for CO and CO2 methanation than that of the Ni/SiC catalyst prepared by WI. Furthermore, it exhibits the highest catalytic activity for CO methanation among the tested catalysts. The high Ni dispersion achieved by the DP method and the high thermal conductivity enabled by SiC are beneficial for both CO and CO2 methanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Fuel 89:1763–1783

    Article  CAS  Google Scholar 

  2. Ahrenfeldt J, Thomsen TP, Henriksen U, Clausen LR (2013) Appl Thermal Eng 50(2):1407–1417

    Article  CAS  Google Scholar 

  3. Götz M, Lefebvre J, Mörs F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renew Energy 85:1371–1390

    Article  Google Scholar 

  4. Rönsch S, Schneider J, Mathischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Fuel 166:276–296

    Article  Google Scholar 

  5. Miao B, Ma SSK, Wang X, Su H, Chan SH (2016) Catal Sci Technol 6:4048–4058

    Article  CAS  Google Scholar 

  6. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) RSC Adv 5:22759–22776

    Article  CAS  Google Scholar 

  7. Su X, Xu J, Liang B, Duan H, Hou B, Huang Y (2016) J Ener Chem 25(4):553–565

    Article  Google Scholar 

  8. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A (2015) Green Chem 17:2647–2663

    Article  CAS  Google Scholar 

  9. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727

    Article  CAS  Google Scholar 

  10. Ban H, Li C, Zhang Y, Meng F, Zheng H, Li Z (2015) Rev Adv Sci Eng 4:126–135

    Article  Google Scholar 

  11. Shcherban ND (2017) J Ind Eng Chem 50:15–28

    Article  CAS  Google Scholar 

  12. Duong-Viet C, Ba H, El-Berrichi Z, Nhut JM, Ledoux MJ, Liu Y, Pham-Huu C (2016) New J Chem 40:4285–4299

    Article  CAS  Google Scholar 

  13. Ledoux MJ, Pham-Huu C (2001) CATTECH 5:226–246

    Article  CAS  Google Scholar 

  14. Nguyen P, Pham C (2011) Appl Catal A 391:443–454

    Article  CAS  Google Scholar 

  15. Liu Y, Ersen O, Meny C, Luck F, Pham-Huu C (2014) ChemSusChem 7(5):1218–1239

    Article  CAS  Google Scholar 

  16. Wang H, Schmack R, Paul B, Albrecht M, Sokolov S, Rummler S, Kondratenko EV, Kraehnert R (2017) Appl Catal A 537:33–39

    Article  CAS  Google Scholar 

  17. Hoffmann C, Plate P, Steinbrück A, Kaskel S (2015) Catal Sci Technol 5:4174–4183

    Article  CAS  Google Scholar 

  18. Kim AR, Lee HY, Lee DH, Kim BW, Chung CH, Moon DJ, Jang EJ, Pang C, Bae JW (2015) Energy Fuels 29:1055–1065

    Article  CAS  Google Scholar 

  19. Lakshmanan P, Kim MS, Park ED (2016) Appl Catal A 513:98–105

    Article  CAS  Google Scholar 

  20. Le TA, Kim TW, Lee SH, Park ED (2018) Catal Today 303:159–167

    Article  CAS  Google Scholar 

  21. Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Catal Sci Technol 5:4154–4163

    Article  CAS  Google Scholar 

  22. Xu L, Wang F, Chen M, Zhang J, Yuan K, Wang L, Wu K, Xu G, Chen W (2016) RSC Adv 6:28489–28499

    Article  CAS  Google Scholar 

  23. Le TA, Kim MS, Lee SH, Kim TW, Park ED (2017) Catal Today 293:89–96

    Article  Google Scholar 

  24. Le TA, Kim TW, Lee SH, Park ED (2017) Korean J Chem Eng 34(12):3085–3091

    Article  CAS  Google Scholar 

  25. Zhang G, Sun T, Peng J, Wang S, Wang S (2013) Appl Catal A 462–463:75–81

    Article  Google Scholar 

  26. Jin G, Gu F, Liu Q, Wang X, Jia L, Xu G, Zhong Z, Su F (2016) RSC Adv 6:9631–9639

    Article  CAS  Google Scholar 

  27. Anmin Z, Weiyong Y, Haitao Z, Hongfang M, Dingye F (2012) J Nat Gas Chem 21:170–177

    Article  Google Scholar 

  28. Xiaopeng L, Fangna G, Qing L, Jiajian G, Lihua J, Guangwen X, Ziyi Z, Fabing S (2015) Ind Eng Chem Res 54:12516–12524

    Article  Google Scholar 

  29. Patterson A (1939) Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  30. Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso FR, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87(9–10):1051–1069

    CAS  Google Scholar 

  31. Jesús MGV, José LV, Antonio de LC, Beatriz GM, Paula S, Fernando D (2012) Appl Catal A 431–432:49–56

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resources Program in Energy Technology (No. 20154010200820) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), which is granted financial resources from the Ministry of Trade, Industry and Energy of the Republic of Korea. This work was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017R1A2B3011316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Duck Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 947 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.A., Kang, J.K. & Park, E.D. CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts. Top Catal 61, 1537–1544 (2018). https://doi.org/10.1007/s11244-018-0965-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0965-7

Keywords

Navigation