Key Structural Transformations and Kinetics of Pt Nanoparticles in PEFC Pt/C Electrocatalysts by a Simultaneous Operando Time-Resolved QXAFS–XRD Technique

  • Oki Sekizawa
  • Takuma Kaneko
  • Kotaro Higashi
  • Shinobu Takao
  • Yusuke Yoshida
  • Takao Gunji
  • Xiao Zhao
  • Gabor Samjeské
  • Tomohiro Sakata
  • Tomoya Uruga
  • Yasuhiro Iwasawa
Original Paper
  • 1 Downloads

Abstract

This account article treats with the key structural transformations and kinetics of Pt nanoparticles in Pt/C cathode catalysts under transient voltage operations (0.4 VRHE→1.4 VRHE→0.4 VRHE) by simultaneous operando time-resolved QXAFS–XRD measurements, summarizing and analyzing our previous kinetic data in more detail and discussing on the key reaction steps and rate constants for the performance and durability of polymer electrolyte fuel cells (PEFC). The time-resolved QXAFS–XRD measurements were conducted at each acquisition time of 20 ms, while measuring the current/charge of the PEFC. The rate constants for the transient responses of Pt valence, CN(Pt–O) (CN: coordination number), CN(Pt–Pt), and Pt metallic-phase core size under the transient voltage operations were determined by the combined time-resolved QXAFS‒XRD technique. The relationship of the structural kinetics with the performance and durability of the PEFC Pt/C was also documented as key issues for the development of next-generation PEFCs. The present account emphasizes the time-resolved QXAFS and XRD techniques to be a powerful technique to analyze directly the structural and electronic change of metal nanoparticles inside PEFC under the operating conditions.

Graphical Abstract

Keywords

Simultaneous operando time-resolved QXAFS–XRD measurements Pt/C cathode catalyst Polymer electrolyte fuel cell Mechanism and structural kinetics Performance and durability 

Notes

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) of the Ministry of Economy, Trade, and Industry (METI), Japan. XAFS measurements were conducted at BL36XU beamline in SPring-8 (No. 2013A7802, 2013B7806, 2014A7801, 2014A7805, 2014B7801, 2014B7803, 2014B7805, 2015A7803, 2015A7804, 2015A7840, 2015B7801, 2015B7803, 2015B7805, 2015B7840, 2016A7801, 2016A7802, 2016A7803, 2016A7840, 2016B7801, 2016B7803, 2016B7806, and 2016B7840, 2017A7801, 2017A7803, 2017A7806, 2017A7841).

References

  1. 1.
    Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J-Y, Su D, Huang X (2016) Science 354:1410–1414CrossRefGoogle Scholar
  2. 2.
    Wang H, Xu S, Tsai C, Li Y, Liu C, Zhao J, Liu Y, Yuan H (2016) Science 354:1031–1036CrossRefGoogle Scholar
  3. 3.
    Stephens IE, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorf I (2012) Energy Environ Sci 5:6744–6762CrossRefGoogle Scholar
  4. 4.
    Debe K (2012) Nature 486:43 – 51CrossRefGoogle Scholar
  5. 5.
    Zhang L, Roling LT, Wang X, Vara MV, Chi M, Liu J, Choi S, Park J, Herron JA, Xie Z (2015) Science 349:412–416CrossRefGoogle Scholar
  6. 6.
    Oezaslan M, Hasché F, Strasser P (2013) J Phys Chem Lett 4:3273 – 3291CrossRefGoogle Scholar
  7. 7.
    Nagasawa K, Takao S, Nagamatsu S, Samjeské G, Sekizawa O, Kaneko T, Higashi K, Yamamoto T, Uruga T, Iwasawa Y (2015) J Am Chem Soc 137:12856–12864CrossRefGoogle Scholar
  8. 8.
    Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Huolin W, Xin L, Snyder JD, Li D, Herron JA (2014) Science 343:1339–1343CrossRefGoogle Scholar
  9. 9.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D (2007) Chem Rev 107:3904–3951CrossRefGoogle Scholar
  10. 10.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marcovic NM (2007) Science 315:493 – 497CrossRefGoogle Scholar
  11. 11.
    Tada M, Uruga T, Iwasawa Y (2015) Catal Lett 145:58–70CrossRefGoogle Scholar
  12. 12.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) J Electrochem Soc 142:1409–1422CrossRefGoogle Scholar
  13. 13.
    Adzic RR, Wang JX, Ocko BM, McBreen J (2010) EXAFS, XANES, SXS. Handbook of fuel cells. Wiley, New York (Online)Google Scholar
  14. 14.
    Nagamatsu S, Takao S, Samjeské G, Nagasawa K, Sekizawa O, Kaneko T, Higashi K, Uruga T, Gayen S, Velaga S, Milan K, Iwasawa Y (2016) Surf Sci 648:100–113CrossRefGoogle Scholar
  15. 15.
    Tada M, Murata S, Asakoka T, Hiroshima K, Okumura K, Tanida H, Uruga T, Nakanishi H, Matsumoto S, Inada Y, Nomura M, Iwasawa Y (2007) Angew Chem Int Ed 46:4310CrossRefGoogle Scholar
  16. 16.
    Ishiguro N, Kityakarn S, Sekizawa O, Uruga T, Sasabe T, Nagasawa K, Yokoyama T, Tada M (2014) J Phys Chem C 118:15874–15883CrossRefGoogle Scholar
  17. 17.
    Ishiguro N, Saida T, Uruga T, Sekizawa O, Nagasawa K, Nitta K, Yamamoto T, Ohkoshi S, Yokoyama T, Tada M (2013) Phys Chem Chem Phys 15:18827–18834CrossRefGoogle Scholar
  18. 18.
    Imai H, Izumi K, Matsumoto M, Kubo Y, Kato K, Imai Y (2009) J Am Chem Soc 131:6293–6300CrossRefGoogle Scholar
  19. 19.
    Nam K-W, Bak S-M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K-Y, Yang X-Q (2013) Adv Funct Mater 23:1047–1063CrossRefGoogle Scholar
  20. 20.
    Frenkel AI, Wang Q, Marinkovic N, Chen JG, Barrio L, Si R, Cámara AL, Estrella AM, Rodriguez JA, Hanson JC (2011) J Phys Chem C 115:17884–17890CrossRefGoogle Scholar
  21. 21.
    Sekizawa O, Uruga T, Higashi K, Kaneko T, Yoshida Y, Sakata T, Iwasawa Y (2017) ACS Sustain Chem Eng 5:3631 – 3636CrossRefGoogle Scholar
  22. 22.
    Kaneko T, Samjeské G, Nagamatsu S, Higashi K, Sekizawa O, Takao S, Yamamoto T, Zhao X, Sakata T, Uruga T, Iwasawa Y (2016) J Phys Chem C 120:24250–24264CrossRefGoogle Scholar
  23. 23.
    Nagasawa K, Takao S, Higashi K, Nagamatsu S, Samjeské G, Imaizumi Y, Sekizawa O, Yamamoto T, Uruga T, Iwasawa Y (2014) Phys Chem Chem Phys 16:10075–10087CrossRefGoogle Scholar
  24. 24.
    Sekizawa O, Uruga T, Tada M, Nitta K, Kato K, Tanida H, Takeshita K, Takahashi S, Sano M, Aoyagi H, Watanabe A, Nariyama N, Ohashi H, Yumoto H, Koyama T, Senba Y, Takeuchi T, Furukawa Y, Ohata T, Matsushita T, Ishizawa Y, Kudo T, Kimura H, Yamazaki H, Tanaka T, Bizen T, Seike T, Goto S, Ohno H, Takata M, Kitamura H, Ishikawa T, Yokoyama T, Iwasawa Y (2013) J Phys Conf Ser 430:012020–012021CrossRefGoogle Scholar
  25. 25.
    Iwasawa Y (1996) X-ray absorption fine structure for catalysts and surfaces. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  26. 26.
    Iwasawa Y, Asakura K, Tada M (2016) XAFS techniques for catalysts, nanomaterials and surfaces. Springer, New YorkGoogle Scholar
  27. 27.
    Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995) Physica B 208–209:154–156CrossRefGoogle Scholar
  28. 28.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  29. 29.
    Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654CrossRefGoogle Scholar
  30. 30.
    Hirunsit P, Balbuena PB (2009) Surf Sci 603:3239–3248CrossRefGoogle Scholar
  31. 31.
    Matanovic I, Garzon FH, Henson NJ (2011) J Phys Chem C 115:10640–10650CrossRefGoogle Scholar
  32. 32.
    Takao S, Sekizawa O, Nagamatsu S, Kaneko T, Yamamoto T, Samjeské G, Higashi K, Nagasawa K, Tsuji T, Suzuki M, Kawamura N, Mizumaki M, Uruga T, Iwasawa Y (2014) Angew Chem Int Ed 53:14110CrossRefGoogle Scholar
  33. 33.
    Takao S, Sekizawa O, Samjeské G, Nagamatsu S, Kaneko T, Yamamoto T, Higashi K, Nagasawa K, Uruga T, Iwasawa Y (2015) J Phys Chem Lett 6:2121CrossRefGoogle Scholar
  34. 34.
    Takao S, Sekizawa O, Samjeské G, Namagatsu S, Kaneko T, Higashi K, Yamamoto T, Nagasawa K, Zhao X, Uruga T, Iwasawa Y (2016) Top Catal 59:1722–1731CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oki Sekizawa
    • 1
    • 2
  • Takuma Kaneko
    • 1
  • Kotaro Higashi
    • 1
  • Shinobu Takao
    • 1
  • Yusuke Yoshida
    • 1
  • Takao Gunji
    • 1
  • Xiao Zhao
    • 1
  • Gabor Samjeské
    • 1
  • Tomohiro Sakata
    • 1
  • Tomoya Uruga
    • 1
    • 2
  • Yasuhiro Iwasawa
    • 1
    • 3
  1. 1.Innovation Research Center for Fuel CellsThe University of Electro-CommunicationsTokyoJapan
  2. 2.Japan Synchrotron Radiation Research Institute, Spring-8SayoJapan
  3. 3.Department of Engineering Science, Graduate School of Informatics and EngineeringThe University of Electro-CommunicationsTokyoJapan

Personalised recommendations