Skip to main content
Log in

Consorted Vinylene Mechanism for Cobalt Fischer–Tropsch Synthesis Encompassing Water or Hydroxyl Assisted CO-Activation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A mechanistic model for Fischer–Tropsch synthesis is proposed. The model contains four key steps. The first step is hydrogen assisted CO activation to formyl. This is followed by hydrogen transfer from either water or hydroxyl to a hydroxycarbene intermediate to generate CH* surface species on cobalt as chain building blocks. Further, chain propagation is by adding methylidyne (CH*) to an alkylidene (CHCH2R) chain to create a vinylene (CHCHR) chain end unit. Last, hydrogenation finalizes the chain-building step or terminates the chain depending on whether hydrogen is added to the β- or α-carbon atom, respectively. The result is that the main product is α-olefins. Chain growth probability is independent of hydrogen partial pressure and depends solely on the surface coverage of CH* monomers. Short-chain (Me) branching and variation in chain growth with chain length are also rationalized. Derived kinetic equations depend on details of the mechanism, but generally encompass water in the expressions and can account for both positive and negative water responses. The expression for the Anderson–Schulz–Flory (ASF) α is dependent on CO, and can contains the water vapor pressure as well, in a way consistent with higher α when more CO and water are present for production of CH* chain growth monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Recalculated and plotted from data [34])

Similar content being viewed by others

References

  1. Rytter E, Holmen A (2015) Catalysts 5(2):478–499

    Article  CAS  Google Scholar 

  2. Rytter E, Tsakoumis NE, Holmen A (2016) Catal Today 261:3–16

    Article  CAS  Google Scholar 

  3. Rytter E, Holmen A (2016) Catal Today 275:11–19

    Article  CAS  Google Scholar 

  4. Rytter E, Holmen A (2017) ACS Catal 7(8):5321–5328

    Article  CAS  Google Scholar 

  5. Blekkan EA, Borg Ø, Holmen A (2007) Catal 20:13

    CAS  Google Scholar 

  6. Storsæter S, Borg Ø, Blekkan EA, Tøtdal B, Holmen A (2005) Catal Today 100:343

    Article  CAS  Google Scholar 

  7. Borg Ø, Storsæter S, Eri S, Wigum H, Rytter E, Holmen A (2006) Catal Lett 107:95

    Article  CAS  Google Scholar 

  8. Lögdberg S, Boutonnet M, Walmsley JC, Järås S, Holmen A, Blekkan EA (2011) Appl Catal A 393:109

    Article  CAS  Google Scholar 

  9. Enger BC, Fossan Å-L, Borg Ø, Rytter E, Holmen A (2011) J Catal 284:9

    Article  CAS  Google Scholar 

  10. Anderson RB, Friedel RA, Storch HH (1951) J Chem Phys 19:313

    Article  CAS  Google Scholar 

  11. Krishnamoorthy S, Tu M, Ojeda MP, Pinna D, Iglesia E (2002) J Catal 211:422–433

    Article  CAS  Google Scholar 

  12. Bertole CJ, Mims CA, Kiss G (2004) J Catal 221:191

    Article  CAS  Google Scholar 

  13. Hibbits DD, Loveless BT, Neurock M, Iglesia E (2013) Angew Chem Int Ed 20:12273–12278

    Article  CAS  Google Scholar 

  14. Dalai AK, Das TK, Chaudhari KV, Jacobs G, Davis BH (2005) Appl Catal A 289:135

    Article  CAS  Google Scholar 

  15. Schanke D, Lian P, Eri S, Rytter E, Sannæs BH, Kinnari KJ (2001) Stud Surf Sci Catal 136:185

    Article  Google Scholar 

  16. Lillebø AH (2014) Conversion of Biomass Derived Synthesis Gas into Liquid Fuels via the Fischer–Tropsch Synthesis Process: Effect of Alkali and Alkaline Earth Metal Impurities and CO Conversion Levels on Cobalt Based Catalysts, Ph.D. thesis, NTNU

  17. Rytter E, Eri S, Skagseth TH, Schanke D, Bergene E, Myrstad R, Lindvåg A (2007) Ind Eng Chem Res 46:9032

    Article  CAS  Google Scholar 

  18. Oosterbeek H, van Bavel AP (2016) Extended abstract 992, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, Norway

  19. Davis BH, Iglesia E, Technology Development for Iron and Cobalt Fischer–Tropsch Catalysts, Final Technical Report, Univ. Kentucky Research Foundation, 30 June 2002, pp. 1474–1572. http://www.fischer-tropsch.org/DOE/DOE_reports/40308/FC26-98FT40308-f/FC26-98FT40308-f_toc.htm

  20. Yang J, Eiras SB, Myrstad R, Pfeifer P, Venvik HJ, Holmen A (2016) In: Davis BH, Occelli ML (eds) Fischer–Tropsch synthesis, catalysts, and catalysis. CRC Press, Boca Raton, Chemical Industries/142 Chap. 12, p 223

    Chapter  Google Scholar 

  21. Shi B, Davis BH (2005) Comput Des 106:129

    CAS  Google Scholar 

  22. Patzlaff J, Liu Y, Craffmann C, Gaube J (2002) Catal Today 71:381–394

    Article  CAS  Google Scholar 

  23. Borg Ø, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Rytter E (2008) J Catal 259:161

    Article  CAS  Google Scholar 

  24. Borg Ø, Hammer N, Enger BC, Myrstad R, Lindvåg OA, Eri S, Skagseth TH, Rytter E (2011) J Catal 279:163

    Article  CAS  Google Scholar 

  25. van der Laan GP, Beenackers AACM. (1999) Catal Rev 41:255

    Article  Google Scholar 

  26. Ledesma C, Yang J, Chen D, Holmen A (2014) ACS Catal 4:4527–4547

    Article  CAS  Google Scholar 

  27. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn E, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956

    Article  CAS  PubMed  Google Scholar 

  28. Rane SP, Borg Ø, Yang J, Rytter E, Holmen A (2010) Appl Catal A 388:160

    Article  CAS  Google Scholar 

  29. Enger BC, Frøseth V, Yang J, Rytter E, Holmen A (2013) J Catal 284:187

    Article  CAS  Google Scholar 

  30. Yang J, Qi Y, Zhu J, Zhu Y-A, Chen D, Holmen A (2013) J Catal 308:37–49

    Article  CAS  Google Scholar 

  31. Lögdberg S, Lualdi M, Järås S, Walmsley JC, Blekkan EA, Rytter E, Holmen A (2010) J Catal 274:84

    Article  CAS  Google Scholar 

  32. Lögdberg S, Yang J, Lualdi M, Walmsley JC, Järås S, Boutonnet M, Blekkan EA, Rytter E, Holmen A (2017) J Catal 56:515

    Article  CAS  Google Scholar 

  33. Bezemer GL (2016) Extended abstract 1088, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, Norway

  34. Schulz H, Claeys M (1999) Appl Catal A 186:71–90

    Article  CAS  Google Scholar 

  35. Keyvanloo K, Fischer MJ, Hecker WC, Lancee RJ, Jacobs G, Bartholomew CH (2015) J Catal 327:33–47

    Article  CAS  Google Scholar 

  36. Nandula A, Trinh QT, Saeys M, Alexandrova AN (2015) Angew Chem Int Ed 54:5312–5316

    Article  CAS  Google Scholar 

  37. Storsæter S, Chen D, Holmen A (2006) Surf Sci 600:2051–2063

    Article  CAS  Google Scholar 

  38. Ojeda M, Nabar R, Nilikar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287–297

    Article  CAS  Google Scholar 

  39. van Helden P, van den Berg JA, Ciobica IM (2012) Catal Sci Technol 2:491–494

    Article  CAS  Google Scholar 

  40. Keyvanloo K, Lanham SJ, Hecker WC (2016) Catal Today 270:9–18

    Article  CAS  Google Scholar 

  41. Gunasooriya GTKK, Banerjee A, Saeys M (2016) Extended abstract 1154, 11th Natural Gas Conversion Symposium, Tromsø

  42. Gunasooriya GTKK., van Bavel AP, Kuipers HPCE, Saeys M (2016) ACS Catal 6:3660–3664

    Article  CAS  Google Scholar 

  43. Strømsheim MD, Svenum IH, Borg A, Venvik HJ (2016) Extended abstract 1237, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, Norway

  44. Paredes-Nunez A, Lorito D, Schuurman Y, Guilhaume N, Meunier FC (2015) J Catal 329:229–236

    Article  CAS  Google Scholar 

  45. Paredes-Nunez A, Guilhaume N, Schuurman Y, Meunier FC (2016) Extended abstract 1102, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, Norway

  46. Weststrate CJ, Ciobîcǎ IM, Saib AM, Moodley DJ, Niemantsverdriet JW (2014) Catal. Today 228:106–112

    Article  CAS  Google Scholar 

  47. Weststrate CJ, van Helden P, Niemantsverdriet JW (2016) Catal Today 275:100–110

    Article  CAS  Google Scholar 

  48. Huff GA Jr, Satterfield CN (1984) J Catal 85:370

    Article  CAS  Google Scholar 

  49. Iglesia E, Soled SL, Fiato RA (1992) J Catal 137:212

    Article  CAS  Google Scholar 

  50. Todic B, Ma W, Jacobs G, Davis BH, Bukur DB (2014) J Catal 311:325–338

    Article  CAS  Google Scholar 

  51. Withers HP Jr, Eliezer KF, Mitchel JW (1990) Ind Eng Chem Res 29:1807–1814

    Article  CAS  Google Scholar 

  52. van Steen E, Schulz H (1999) Appl Catal A 186:309–320

    Article  Google Scholar 

  53. Das TK, Conner WA, Li J, Jacobs G, Dry ME, Davis BH (2005) Energy Fuels 10:1430–1439

    Article  CAS  Google Scholar 

  54. Bhatelia T, Ma W, Jacobs G, Davis BH, Bukur DB (2011) Chem Eng Trans 25:707

    Google Scholar 

  55. Ma W, Jacobs G, Sparks DE, Spicer RL, Davis BH, Klettlinger JLS, Yen CH (2014) Catal Today 228:158

    Article  CAS  Google Scholar 

  56. Hillestad M (2015) Chem Prod Proc Model 10:147

    CAS  Google Scholar 

Download references

Acknowledgements

An important part of this paper is inspired by the presentation in Tromsø by Heiko Oosterbeek at the 11th Natural Gas Conversion Symposium in June 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erling Rytter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rytter, E., Holmen, A. Consorted Vinylene Mechanism for Cobalt Fischer–Tropsch Synthesis Encompassing Water or Hydroxyl Assisted CO-Activation. Top Catal 61, 1024–1034 (2018). https://doi.org/10.1007/s11244-018-0932-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0932-3

Keywords

Navigation