Identifying Catalytic Reactions on Single Nanoparticles

Original Paper
  • 57 Downloads

Abstract

In the recent years, various high spatial resolution nanospectroscopy methods were developed and utilized to uncover catalysts’ heterogeneities and the ways by which these heterogeneities control the catalytic reactivity. High spatial resolution nanospectroscopy measurements identified that heterogeneities within catalytic particles lead to substantial gradients in reaction rates at different positions in the catalytic particle and variation in the reactivity between particles in the same batch. Here we review the latest developments in the field of high spatial resolution spectroscopy measurements of catalytic reactions on the surface of solid catalysts. Specifically, in this review we discuss the capabilities of various spectroscopic methods, such as super resolution imaging, tip enhanced Raman spectroscopy and IR nanospectroscopy to characterize the reactant-into-product-transformation on the surface of solid catalysts with nanometer resolution. It is demonstrated that high-spatial resolution spectroscopy measurements reveal the ways by which differences in the size, shape and composition of solid catalysts influence their reactivity, uncovering structure–reactivity correlations that are mostly masked while using averaging, ensemble based spectroscopy measurements.

Keywords

High spatial resolution spectroscopy Tip enhanced Raman spectroscopy Fluorescence microscopy IR nanospectroscopy Near-field microscopy 

Notes

Acknowledgements

This work was partially supported by the BSF (Grant No. 2016-344). S.D. acknowledges the Israeli Ministry of Energy for financial support.

References

  1. 1.
    Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691CrossRefGoogle Scholar
  2. 2.
    Somorjai GA (2004) On the move. Nature 430:730–730CrossRefGoogle Scholar
  3. 3.
    Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228CrossRefGoogle Scholar
  4. 4.
    Buurmans ILC, Weckhuysen BM (2012) Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4:873–886CrossRefGoogle Scholar
  5. 5.
    Somorjai GA, Blakely DW (1975) Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 258:580–583CrossRefGoogle Scholar
  6. 6.
    Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Identification of the ‘‘active sites’’ of a surface-catalyzed reaction. Science 273:1688–1690CrossRefGoogle Scholar
  7. 7.
    Yates JT (1995) Surface-chemistry at metallic step defect sites. J Vac Sci Technol A 13:1359–1367CrossRefGoogle Scholar
  8. 8.
    Salmeron M, Gale RJ, Somorjai GA (1977) Molecular-beam study of H2-D2 exchange-reaction on stepped platinum crystal-surfaces—dependence on reactant angle of incidence. J Chem Phys 67:5324–5334CrossRefGoogle Scholar
  9. 9.
    Salmeron M, Gale RJ, Somorjai GA (1979) Modulated molecular-beam study of the mechanism of the H2-D2 exchange-reaction on Pt(111) and Pt(332) crystal-surfaces. J Chem Phys 70:2807–2818CrossRefGoogle Scholar
  10. 10.
    Weckhuysen BM (2010) Preface: recent advances in the in-situ characterization of heterogeneous catalysts. Chem Soc Rev 39:4557–4559CrossRefGoogle Scholar
  11. 11.
    Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Glaser R, Krewer U, Reuter K, Grunwaldt JD (2017) Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9:17–29CrossRefGoogle Scholar
  12. 12.
    Topsoe H (2003) Developments in operando studies and in situ characterization of heterogeneous catalysts. J Catal 216:155–164CrossRefGoogle Scholar
  13. 13.
    Green IX, Tang WJ, Neurock M, Yates JT (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333:736–739CrossRefGoogle Scholar
  14. 14.
    Gross E, Asscher M, Lundwall M, Goodman DW (2007) Gold nanoclusters deposited on SiO2 via water as buffer layer: CO-IRAS and TPD characterization. J Phys Chem C 111:16197–16201CrossRefGoogle Scholar
  15. 15.
    Green IX, Tang WJ, McEntee M, Neurock M, Yates JT (2012) Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. J Am Chem Soc 134:12717–12723CrossRefGoogle Scholar
  16. 16.
    Green IX, Tang WJ, Neurock M, Yates JT (2014) Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites. Acc Chem Res 47:805–815CrossRefGoogle Scholar
  17. 17.
    de Smit E, Swart I, Creemer JF, Hoveling GH, Gilles MK, Tyliszczak T, Kooyman PJ, Zandbergen HW, Morin C, Weckhuysen BM, de Groot FMF (2008) Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456:222–U239CrossRefGoogle Scholar
  18. 18.
    Liu YJ, Meirer F, Krest CM, Webb S, Weckhuysen BM (2016) Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy. Nat Commun 7:12634CrossRefGoogle Scholar
  19. 19.
    Zecevic J, de Jong KP, de Jongh PE (2013) Progress in electron tomography to assess the 3D nanostructure of catalysts. Curr Opin Solid State Mater Sci 17:115–125CrossRefGoogle Scholar
  20. 20.
    de Groot FMF, de Smit E, van Schooneveld MM, Aramburo LR, Weckhuysen BM (2010) In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. ChemPhysChem 11:951–962CrossRefGoogle Scholar
  21. 21.
    Gross E (2016) Uncovering the deactivation mechanism of Au catalyst with operando high spatial resolution IR and X-ray microspectroscopy measurements. Surf Sci 648:136–140CrossRefGoogle Scholar
  22. 22.
    Gross E, Shu XZ, Alayoglu S, Bechtel HA, Martin MC, Toste FD, Somorjai GA (2014) In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters. J Am Chem Soc 136:3624–3629CrossRefGoogle Scholar
  23. 23.
    Grunwaldt JD, Schroer CG (2010) Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem Soc Rev 39:4741–4753CrossRefGoogle Scholar
  24. 24.
    Gonzalez-Jimenez ID, Cats K, Davidian T, Ruitenbeek M, Meirer F, Liu YJ, Nelson J, Andrews JC, Pianetta P, de Groot FMF, Weckhuysen BM (2012) Hard X-ray nanotomography of catalytic solids at work. Angew Chem Int Ed 51:11986–11990CrossRefGoogle Scholar
  25. 25.
    Levartovsky Y, Gross E (2016) Using operando microspectroscopy to uncover the correlations between the electronic properties of dendrimer-encapsulated metallic nanoparticles and their catalytic reactivity in pi-bond activation reactions. Top Catal 59:1700–1711CrossRefGoogle Scholar
  26. 26.
    Stavitski E, Weckhuysen BM (2010) Infrared and Raman imaging of heterogeneous catalysts. Chem Soc Rev 39:4615–4625CrossRefGoogle Scholar
  27. 27.
    Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hilenbrand R (2012) Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett 12:3973–3978CrossRefGoogle Scholar
  28. 28.
    Zrimsek AB, Chiang NH, Mattei M, Zaleski S, McAnally MO, Chapman CT, Henry AI, Schatz GC, Van Duyne RP (2017) Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem Rev 117:7583–7613CrossRefGoogle Scholar
  29. 29.
    Muller EA, Pollard B, Raschke MB (2015) Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J Phys Chem Lett 6:1275–1284CrossRefGoogle Scholar
  30. 30.
    Sambur JB, Chen P (2014) Approaches to single-nanoparticle catalysis. Annu Rev Phys Chem 65:395–422CrossRefGoogle Scholar
  31. 31.
    Cordes T, Blum SA (2013) Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat Chem 5:993–999CrossRefGoogle Scholar
  32. 32.
    De Cremer G, Sels BF, De Vos DE, Hofkens J, Roeffaers MBJ (2010) Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem Soc Rev 39:4703–4717CrossRefGoogle Scholar
  33. 33.
    Pettinger B, Schambach P, Villagomez CJ, Scott N (2012) Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu Rev Phys Chem 63:379–399.CrossRefGoogle Scholar
  34. 34.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183:333–336CrossRefGoogle Scholar
  35. 35.
    van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol 7:583–586CrossRefGoogle Scholar
  36. 36.
    Zhong JH, Jin X, Meng LY, Wang X, Su HS, Yang ZL, Williams CT, Ren B (2017) Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat Nanotechnol 12:132–136CrossRefGoogle Scholar
  37. 37.
    Kumar N, Stephanidis B, Zenobi R, Wain AJ, Roy D (2015) Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. Nanoscale 7:7133–7137CrossRefGoogle Scholar
  38. 38.
    Hartman T, Wondergem CS, Kumar N, van den Berg A, Weckhuysen BM (2016) Surface- and tip-enhanced Raman spectroscopy in catalysis. J Phys Chem Lett 7:1570–1584CrossRefGoogle Scholar
  39. 39.
    Kurouski D, Mattei M, Van Duyne RP (2015) Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett 15:7956–7962CrossRefGoogle Scholar
  40. 40.
    Lantman EMV, de Peinder P, Mank AJG, Weckhuysen BM (2015) Separation of time-resolved phenomena in surface-enhanced Raman scattering of the photocatalytic reduction of p-nitrothiophenol. ChemPhysChem 16:547–554CrossRefGoogle Scholar
  41. 41.
    Huber AJ, Wittborn J, Hillenbrand R (2010) Infrared spectroscopic near-field mapping of single nanotransistors. Nanotechnology 21:235702CrossRefGoogle Scholar
  42. 42.
    Xu XJG, Rang M, Craig IM, Raschke MB (2012) Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J Phys Chem Lett 3:1836–1841CrossRefGoogle Scholar
  43. 43.
    Mastel S, Govyadinov AA, de Oliveira TVAG, Amenabar I, Hillenbrand R (2015) Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references. Appl Phys Lett 106:023113CrossRefGoogle Scholar
  44. 44.
    Muller EA, Pollard B, Bechtel HA, van Blerkom P, Raschke MB (2016) Infrared vibrational nano-crystallography and nano-imaging. Sci Adv 2:e1601006CrossRefGoogle Scholar
  45. 45.
    Berweger S, Nguyen DM, Muller EA, Bechtel HA, Perkins TT, Raschke MB (2013) Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J Am Chem Soc 135:18292–18295CrossRefGoogle Scholar
  46. 46.
    Bechtel HA, Muller EA, Olmon RL, Martin MC, Raschke MB (2014) Ultrabroadband infrared nanospectroscopic imaging. Proc Natl Acad Sci USA 111:7191–7196CrossRefGoogle Scholar
  47. 47.
    Johns RW, Bechtel HA, Runnerstrom EL, Agrawal A, Lounis SD, Milliron DJ (2016) Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals. Nat Commun 7:11583CrossRefGoogle Scholar
  48. 48.
    Levratovsky Y, Gross E (2016) High spatial resolution mapping of chemically-active self-assembled N-heterocyclic carbenes on Pt nanoparticles. Faraday Discuss 188:345–353CrossRefGoogle Scholar
  49. 49.
    Wu CY, Wolf WJ, Levartovsky Y, Bechtel HA, Martin MC, Toste FD, Gross E (2017) High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541:511CrossRefGoogle Scholar
  50. 50.
    Andoy NM, Zhou XC, Choudhary E, Shen H, Liu GK, Chen P (2013) Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J Am Chem Soc 135:1845–1852CrossRefGoogle Scholar
  51. 51.
    Zhou XC, Choudhary E, Andoy NM, Zou NM, Chen P (2013) Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. ACS Catal 3:1448–1453CrossRefGoogle Scholar
  52. 52.
    Roeffaers MBJ, Sels BF, Uji-i H, De Schryver FC, Jacobs PA, De Vos DE, Hofkens J (2006) Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439:572–575CrossRefGoogle Scholar
  53. 53.
    Van Loon J, Janssen KPF, Franklin T, Kubarev AV, Steele JA, Debroye E, Breynaert E, Martens JA, Roeffaers MBJ (2017) Rationalizing acid zeolite performance on the nanoscale by correlative fluorescence and electron microscopy. ACS Catal 7:5234–5242CrossRefGoogle Scholar
  54. 54.
    Ristanovic Z, Hofmann JP, De Cremer G, Kubarev AV, Rohnke M, Meirer F, Hofkens J, Roeffaers MBJ, Weckhuysen BM (2015) Quantitative 3D fluorescence imaging of single catalytic turnovers reveals spatiotemporal gradients in reactivity of zeolite H-ZSM-5 crystals upon steaming. J Am Chem Soc 137:6559–6568CrossRefGoogle Scholar
  55. 55.
    Ristanovic Z, Kerssens MM, Kubarev AV, Hendriks FC, Dedecker P, Hofkens J, Roeffaers MBJ, Weckhuysen BM (2015) High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles. Angew Chem Int Ed 54:1836–1840CrossRefGoogle Scholar
  56. 56.
    Maglione M, Sigrist SJ (2013) Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16:790–797CrossRefGoogle Scholar
  57. 57.
    Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–612CrossRefGoogle Scholar
  58. 58.
    Chen C, Hayazawa N, Kawata S (2014) A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun 5:3312Google Scholar
  59. 59.
    Rybina A, Lang C, Wirtz M, Grussmayer K, Kurz A, Maier F, Schmitt A, Trapp O, Jung G, Herten DP (2013) Distinguishing alternative reaction pathways by single-molecule fluorescence spectroscopy. Angew Chem Int Ed 52:6322–6325CrossRefGoogle Scholar
  60. 60.
    Crudden CM, Horton JH, Ebralidze II, Zenkina OV, McLean AB, Drevniok B, She Z, Kraatz HB, Mosey NJ, Seki T, Keske EC, Leake JD, Rousina-Webb A, Wu G (2014) Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat Chem 6:409–414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemistry and the Center for Nanoscience and NanofabricationThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations