Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts

Original Paper
  • 26 Downloads

Abstract

Ethanol represents a promising energy source for powering fuel cells. The development of direct ethanol fuel cells is however challenged by both the sluggish kinetics of the ethanol oxidation reaction and the poor selectivity toward complete oxidation. In this work, we combine spectroelectrochemical studies of extended surfaces using sum frequency generation (SFG) and product-resolved electrocatalytic measurements under potentiostatic conditions to investigate the electro-oxidation of alcohols. By comparing the electro-oxidation of ethanol and ethylene glycol, we illustrate the different catalytic mechanisms of C–C bond cleavage and identify the role of β carbon in hindering the complete oxidation of ethanol toward CO2. Our findings provide new insights into the development of efficient electrocatalysts for multi-carbon alcohol oxidation.

Keywords

Ethanol oxidation Platinum electrocatalysts Fuel cells Sum frequency generation spectroscopy SFG 

Notes

Acknowledgements

This work was supported by the Young Investigator Award of Army Research Office (W911 NF-15-1-0123) and the Discovery Award of the Johns Hopkins University.

Supplementary material

11244_2018_930_MOESM1_ESM.docx (857 kb)
Supplementary material 1 (DOCX 857 KB)

References

  1. 1.
    Goldemberg J (2007) Science 315:808–810CrossRefGoogle Scholar
  2. 2.
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Science 311:506–508CrossRefGoogle Scholar
  3. 3.
    Demirbas A (2007) Prog Energy Combust 33:1–18CrossRefGoogle Scholar
  4. 4.
    Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Appl Energy 145:80–103CrossRefGoogle Scholar
  5. 5.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105:283–296CrossRefGoogle Scholar
  6. 6.
    Antolini E (2007) J Power Sources 170:1–12CrossRefGoogle Scholar
  7. 7.
    Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Phys Chem Chem Phys 9:2686–2696CrossRefGoogle Scholar
  8. 8.
    Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Catal Today 202:197–209CrossRefGoogle Scholar
  9. 9.
    Lai SCS, Koper MTM (2008) Faraday Discuss 140:399–416CrossRefGoogle Scholar
  10. 10.
    Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Faraday Discuss 140:379–397CrossRefGoogle Scholar
  11. 11.
    Leung LWH, Chang SC, Weaver MJ (1989) J Electroanal Chem 266:317–336CrossRefGoogle Scholar
  12. 12.
    Wang H, Jusys Z, Behm RJ (2004) J Phys Chem B 108:19413–19424CrossRefGoogle Scholar
  13. 13.
    Rao V, Hariyanto, Cremers C, Stimming U (2007) Fuel Cells 7:417–423CrossRefGoogle Scholar
  14. 14.
    Lai SCS, Kleijn SEF, Ozturk FTZ, Vellinga VCV, Koning J, Rodriguez P, Koper MTM (2010) Catal Today 154:92–104CrossRefGoogle Scholar
  15. 15.
    Sun S, Heinen M, Jusys Z, Behm RJ (2012) J Power Sources 204:1–13CrossRefGoogle Scholar
  16. 16.
    Shao MH, Adzic RR (2005) Electrochim Acta 50:2415–2422CrossRefGoogle Scholar
  17. 17.
    Lai SCS, Kleyn SEF, Rosca V, Koper MTM (2008) J Phys Chem C 112:19080–19087CrossRefGoogle Scholar
  18. 18.
    Colmati F, Tremiliosi G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) Phys Chem Chem Phys 11:9114–9123CrossRefGoogle Scholar
  19. 19.
    Kutz RB, Braunschweig B, Mukherjee P, Behrens RL, Dlott DD, Wieckowski A (2011) J Catal 278:181–188CrossRefGoogle Scholar
  20. 20.
    Kavanagh R, Cao XM, Lin WF, Hardacre C, Hu P (2012) Angew Chem Int Ed 51:1572–1575CrossRefGoogle Scholar
  21. 21.
    Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) J Phys Chem 97:12020–12029CrossRefGoogle Scholar
  22. 22.
    Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C (1998) J Electroanal Chem 444:41–53CrossRefGoogle Scholar
  23. 23.
    Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS (2014) Chem Rev 114:12397–12429CrossRefGoogle Scholar
  24. 24.
    de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) J Phys Chem B 106:9825–9830CrossRefGoogle Scholar
  25. 25.
    Neto AO, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER (2002) J Electrochem Soc 149:A272–A279Google Scholar
  26. 26.
    Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P (2004) J Power Sources 131:217–223CrossRefGoogle Scholar
  27. 27.
    Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221–233CrossRefGoogle Scholar
  28. 28.
    Sen S, Sen F, Gokagac G (2011) Phys Chem Chem Phys 13:6784–6792CrossRefGoogle Scholar
  29. 29.
    Zhu MY, Sun GQ, Xin Q (2009) Electrochim Acta 54:1511–1518CrossRefGoogle Scholar
  30. 30.
    Kim JH, Choi SM, Nam SH, Seo MH, Choi SH, Kim WB (2008) Appl Catal B Environ 82:89–102CrossRefGoogle Scholar
  31. 31.
    Camara GA, de Lima RB, Iwasita T (2004) Electrochem Commun 6:812–815CrossRefGoogle Scholar
  32. 32.
    Rousseau S, Coutanceau C, Lamy C, Leger JM (2006) J Power Sources 158:18–24CrossRefGoogle Scholar
  33. 33.
    Jin JM, Sheng T, Lin X, Kavanagh R, Hamer P, Hu PJ, Hardacre C, Martinez-Bonastre A, Sharman J, Thompsett D, Lin WF (2014) Phys Chem Chem Phys 16:9432–9440CrossRefGoogle Scholar
  34. 34.
    Salciccioli M, Yu WT, Barteau MA, Chen JGG, Vlachos DG (2011) J Am Chem Soc 133:7996–8004CrossRefGoogle Scholar
  35. 35.
    Schnaidt J, Heinen M, Jusys Z, Behm RJ (2012) J Phys Chem C 116:2872–2883CrossRefGoogle Scholar
  36. 36.
    Aran-Ais RM, Herrero E, Feliu JM (2014) Electrochem Commun 45:40–43CrossRefGoogle Scholar
  37. 37.
    Shen YR (1996) Proc Natl Acad Sci USA 93:12104–12111CrossRefGoogle Scholar
  38. 38.
    Baldelli S, Gewirth AA (2006) Adv Electrochem Sci Eng 9:163–198Google Scholar
  39. 39.
    Gomes JF, Bergamaski K, Pinto MFS, Miranda PB (2013) J Catal 302:67–82CrossRefGoogle Scholar
  40. 40.
    Wang H, Jusys Z, Behm RJ (2006) J Electroanal Chem 595:23–36CrossRefGoogle Scholar
  41. 41.
    Delpeuch AB, Asset T, Chatenet M, Cremers C (2014) J Electrochem Soc 161:F918–F924CrossRefGoogle Scholar
  42. 42.
    Buso-Rogero C, Brimaud S, Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Behm RJ, Feliu JM (2016) J Electroanal Chem 763:116–124CrossRefGoogle Scholar
  43. 43.
    Housmans THM, Wonders AH, Koper MTM (2006) J Phys Chem B 110:10021–10031CrossRefGoogle Scholar
  44. 44.
    Wonders AH, Housmans THM, Rosca V, Koper MTM (2006) J Appl Electrochem 36:1215–1221CrossRefGoogle Scholar
  45. 45.
    Rizo R, Lazaro MJ, Pastor E, Koper MTM (2016) ChemElectroChem 3:2196–2201CrossRefGoogle Scholar
  46. 46.
    Peng S, Lee YM, Wang C, Yin HF, Dai S, Sun SH (2008) Nano Res 1:229–234CrossRefGoogle Scholar
  47. 47.
    Baldelli S, Markovic N, Ross P, Shen Y-R, Somorjai G (2000) Sum-frequency generation of CO on (111) and polycrystalline platinum electrode surfaces: evidence for SFG invisible surface CO. J Phys Chem 103:8920–8925Google Scholar
  48. 48.
    Markovic NM, Ross PN (2002) Surf Sci Rep 45:121–229CrossRefGoogle Scholar
  49. 49.
    Lopez-Cudero A, Cuesta A, Gutierrez C (2005) J Electroanal Chem 579:1–12CrossRefGoogle Scholar
  50. 50.
    Cuesta A, Couto A, Rincon A, Perez MC, Lopez-Cudero A, Gutierrez C (2006) J Electroanal Chem 586:184–195CrossRefGoogle Scholar
  51. 51.
    Lopez-Cudero A, Cuesta A, Gutierrez C (2006) J Electroanal Chem 586:204–216CrossRefGoogle Scholar
  52. 52.
    Strmcnik DS, Tripkovic DV, van der Vliet D, Chang KC, Komanicky V, You H, Karapetrov G, Greeley J, Stamenkovic VR, Markovic NM (2008) J Am Chem Soc 130:15332–15339CrossRefGoogle Scholar
  53. 53.
    Farias MJS, Camara GA, Feliu JM (2015) J Phys Chem C 119:20272–20282CrossRefGoogle Scholar
  54. 54.
    Dederichs F, Friedrich KA, Daum W (2000) J Phys Chem B 104:6626–6632CrossRefGoogle Scholar
  55. 55.
    Ferre-Vilaplana A, Buso-Rogero C, Feliu JM, Herrero E (2016) J Phys Chem C 120:11590–11597CrossRefGoogle Scholar
  56. 56.
    Wang H-F, Liu Z-P (2008) J Am Chem Soc 130:10996–11004CrossRefGoogle Scholar
  57. 57.
    Lai SCS, Koper MTM (2010) J Phys Chem Lett 1:1122–1125CrossRefGoogle Scholar
  58. 58.
    Li DG, Wang C, Tripkovic D, Sun SH, Markovic NM, Stamenkovic VR (2012) ACS Catal 2:1358–1362CrossRefGoogle Scholar
  59. 59.
    van der Vliet DF, Wang C, Li DG, Paulikas AP, Greeley J, Rankin RB, Strmcnik D, Tripkovic D, Markovic NM, Stamenkovic VR (2012) Angew Chem Int Ed 51:3139–3142CrossRefGoogle Scholar
  60. 60.
    Wang H, Jusys Z, Behm RJ (2009) Electrochim Acta 54:6484–6498CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations