Skip to main content
Log in

Iodine Activation of Alcohols: A Computational Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A DFT study aimed at unravelling the origin of catalytic activity of iodine in reaction with alcohols is presented. Computed free energies for generation of the O–I complexes from the separated reactants are around 3 kcal/mol and solvation increases endoergicity by ca. 1 kcal/mol. Calculations suggest that halogen bond formation between I2 and alcohols does not lead to strong activation of the hydroxyl as a leaving group, although solvent has a notable effect in lowering endoergicity for carbocation formation. Model tertiary alcohols exhibited β-proton abstraction following breaking of the C–O bond, while model secondary and primary alcohols experienced an earlier β-proton abstraction, synchronic with the C–O bond cleavage. Consistent with computed natural bond orbital charges, benzylic and propargylic alcohols underwent iodide anion quenching at the para position of phenyl and C-3, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Wu Y, Saho M, Feng Z, Gu X, Hong Y, Cui Q, Ren L, Wang S (2017) Asian J Org Chem 6:76–82

    Article  CAS  Google Scholar 

  2. Qiu Y-F, Ye Y-Y, Song X-R, Zhu X-Y, Yang F, Song B, Wang J, Hua H-L, He Y-T, Han Y-P, Liu X-Y, Liang Y-M (2015) Chem Eur J 21:3480–3487

    Article  CAS  PubMed  Google Scholar 

  3. Guo J, Chen S, Liu J, Guo J, Chen W, Cai Q, Liu P, Sun P (2017) Eur J Org Chem 2017:4773–4777

    Article  CAS  Google Scholar 

  4. Chu C-M, Gao S, Sastry MNV, Yao C-F (2005) Tetrahedron Lett 46:4971–4974

    Article  CAS  Google Scholar 

  5. Cebular K, Stavber S (2017) Pure App Chem. https://doi.org/10.1515/pac-2017-0414

    Article  Google Scholar 

  6. Maity P, Paroi B, Ranu BC (2017) Org Lett 19:5748–5751

    Article  CAS  PubMed  Google Scholar 

  7. Wang S-K, Chen M-T, Zhao D-Y, You X, Luo Q-L (2016) Adv Synth Catal 358:4093–4099

    Article  CAS  Google Scholar 

  8. Tehri P, Aegurula B, Peddinti RK (2017) Tetrahedron Lett 58:2062–2065

    Article  CAS  Google Scholar 

  9. Gupta A, Deshmukh MS, Jain N (2017) J Org Chem 82:4784–4792

    Article  CAS  PubMed  Google Scholar 

  10. Yang D, Sun P, Wei W, Meng L, He L, Fang B, Jiang W, Wang H (2016) Org Chem Front 3:1457–1461

    Article  CAS  Google Scholar 

  11. Wu S-S, Feng C-T, Hu D, Huang Y-K, Li Z, Luo Z-G, Ma S-T (2017) Org Biomol Chem 15:1680–1685

    Article  CAS  PubMed  Google Scholar 

  12. Srihari P, Bhunia DC, Sreedhar P, Yadav JS (2008) Synlett 7:1045–1049

    Article  CAS  Google Scholar 

  13. Srihari P, Bhunia DC, Sreedhar P, Mandal SS, Reddy JSS, Yadav JS (2007) Tetrahedron Lett 48:8120–8124

    Article  CAS  Google Scholar 

  14. Stavber G, Zupan M, Stavber S (2006) Tetrahedron Lett 47:8463–8466

    Article  CAS  Google Scholar 

  15. Jereb M, Vražič D, Zupan M (2011) Tetrahedron 67:1355–1387

    Article  CAS  Google Scholar 

  16. Breugst M, Detmar E, von der Heiden D (2016) ACS Catal 6:3203–3212

    Article  CAS  Google Scholar 

  17. Breugst M, von der Heiden D (2018) Chem Eur J. https://doi.org/10.1002/chem.201706136

    Article  PubMed  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision E.01, Gaussian, Inc, Wallingford, CT

  19. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  20. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  21. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877–13883

    Article  CAS  PubMed  Google Scholar 

  22. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  23. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  24. Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  25. Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct 464:211–226

    Article  CAS  Google Scholar 

  26. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2009) NBO Version 3.1. Gaussian, Inc, Wallingford, CT

  27. Jereb M, Vražič D (2017) Acta Chim Slov 64:747–762 and references therein

    Article  PubMed  Google Scholar 

  28. Toporek M, Michałowska-Kaczmarczyk AM, Michałowski T (2014) Am J Analyt Chem 5:1046–1056

    Article  CAS  Google Scholar 

  29. Sebők-Nagy K, Körtvélyesi T (2004) Int J Chem Kinetic 36:596–602

    Article  CAS  Google Scholar 

  30. von der Heiden D, Bozkus S, Klussmann M, Breugst M (2017) J Org Chem 82:4037–4043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Florida for access to computational facilities at UF High-Performance Computing Center. Access to computational resources at Mendieta cluster from CCAD-UNC, which is part of SNCAD-MinCyT, Argentina, is also acknowledged. GLB acknowledges funding from CONICET and Secyt-UNC. S. S. acknowledges the Slovenian Research Agency (Programme P1-0134) for financial support and helpful discussions with Dr. Anton Kokalj (Jožef Stefan Institute).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriela L. Borosky or Kenneth K. Laali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Respectfully dedicated to Professor George Olah in memoriam.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borosky, G.L., Stavber, S. & Laali, K.K. Iodine Activation of Alcohols: A Computational Study. Top Catal 61, 636–642 (2018). https://doi.org/10.1007/s11244-018-0918-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0918-1

Keywords

Navigation