Topics in Catalysis

, Volume 61, Issue 3–4, pp 267–275 | Cite as

Orbital Physics of Perovskites for the Oxygen Evolution Reaction

  • Ryan Sharpe
  • Julen Munarriz
  • Tingbin Lim
  • Yunzhe Jiao
  • J. W. Niemantsverdriet
  • Victor Polo
  • Jose Gracia
Original Paper


The study of magnetic perovskite oxides has led to novel and very active compounds for O2 generation and other energy applications. Focusing on three different case studies, we summarise the bulk electronic and magnetic properties that initially serve to classify active perovskite catalysts for the oxygen evolution reaction (OER). Ab-initio calculations centred on the orbital physics of the electrons in the d-shell provide a unique insight into the complex interplay between spin dependent interactions versus selectivity and OER reactivity that occurs in these transition-metal oxides. We analyse how the spin, orbital and lattice degrees of freedom establish rational design principles for OER. We observe that itinerant magnetism serves as an indicator for highly active oxygen electro-catalysts. Optimum active sites individually have a net magnetic moment, giving rise to exchange interactions which are collectively ferromagnetic, indicative of spin dependent transport. In particular, optimum active sites for OER need to possess sufficient empty orthogonal orbitals, oriented towards the ligands, to preserve an incoming spin aligned electron flow. Calculations from first principles open up the possibility of anticipating materials with improved electro-catalytic properties, based on orbital engineering.


Oxygen evolution reaction Perovskites Orbital engineering Orbital physics Exchange interactions Electrocatalysis 



JM and VP express their appreciation to the financial support of MINECO/FEDER project CTQ2015-67366-P and from the MECD (FPU14/06003), respectively. In addition, the resources from the supercomputer “memento”, technical expertise and assistance provided by BIFI-ZCAM (Universidad de Zaragoza) are acknowledged. RS, TB, YJ, JWN and JG acknowledge financial support from Synfuels China Technology Co. Ltd.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing interests.


  1. 1.
    Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Science 324:1183–1186CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon J-M (2008) Nature 451:652–657CrossRefGoogle Scholar
  3. 3.
    Koper MTM (2011) J Electroanal Chem 660:254–260CrossRefGoogle Scholar
  4. 4.
    Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) ACS Catal 4:2917–2940CrossRefGoogle Scholar
  5. 5.
    Gracia J, Escuin M, Mallada R, Navascues N, Santamaria J (2016) Nano Energy 20:20–28CrossRefGoogle Scholar
  6. 6.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385CrossRefGoogle Scholar
  7. 7.
    Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) J Phys Chem Lett 3:399–404CrossRefGoogle Scholar
  8. 8.
    Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:2439CrossRefGoogle Scholar
  9. 9.
    Jung J-I, Jeong HY, Lee J-S, Kim MG, Cho J (2014) Angew Chem Int Ed Engl 53:4582–4586CrossRefGoogle Scholar
  10. 10.
    Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M (2017) Nat Commun 8:14586CrossRefGoogle Scholar
  11. 11.
    Sapountzi FM, Gracia JM, Westrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Prog Energy Combust Sci 58:1–35CrossRefGoogle Scholar
  12. 12.
    Terasaki I, Kobayashi W (2007) Prog Solid State Chem 35:439–445CrossRefGoogle Scholar
  13. 13.
    Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397–426CrossRefGoogle Scholar
  14. 14.
    Bockris JO, Otagawa T (1984) J Electrochem Soc 131:290CrossRefGoogle Scholar
  15. 15.
    Arnold EW, Sundaresan S (1987) Chem Eng Commun 58:213–230CrossRefGoogle Scholar
  16. 16.
    Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165CrossRefGoogle Scholar
  17. 17.
    Vojvodic A, Norskov J (2011) Science 334:1355–1356CrossRefGoogle Scholar
  18. 18.
    Gracia J (2017) Phys Chem Chem Phys 19:20451–20456CrossRefGoogle Scholar
  19. 19.
    Lim T, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:2968–2974CrossRefGoogle Scholar
  20. 20.
    Sharpe R, Lim T, Jiao Y, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:3762–3768CrossRefGoogle Scholar
  21. 21.
    Gracia J, Munarriz J, Polo V, Sharpe R, Jiao Y, Niemantsverdriet JW, Lim T (2017) ChemCatChem. Google Scholar
  22. 22.
    Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y (2015) Adv Mater 27:5989–5994CrossRefGoogle Scholar
  23. 23.
    Goodenough JB (2004) Rep Prog Phys 67:1915–1993CrossRefGoogle Scholar
  24. 24.
    Lin JJ, Huang SM, Lin YH, Lee TC, Liu H, Zhang XX, Chen RS, Huang YS (2004) J Phys: Condens Matter 16:8035–8041Google Scholar
  25. 25.
    Mizumaki M, Chen WT, Saito T, Yamada I, Attfield JP, Shimakawa Y (2011) Phys Rev B 84:94418CrossRefGoogle Scholar
  26. 26.
    Shimakawa Y, Takano M (2009) Z Anorg Allg Chem 635:1882–1889CrossRefGoogle Scholar
  27. 27.
    Yamada I (2014) J Ceram Soc Jpn 122:846–851CrossRefGoogle Scholar
  28. 28.
    Hombo J, Matsumoto Y, Kawano T (1990) J Solid State Chem 84:138–143CrossRefGoogle Scholar
  29. 29.
    Takeda Y, Naka S, Takano M, Shinjo T, Takada T, Shimada M (1978) Mater Res Bull 13:61–66CrossRefGoogle Scholar
  30. 30.
    Takano M, Nakanishi N, Takeda Y, Naka S, Takada T (1977) Mater Res Bull 12:923–928CrossRefGoogle Scholar
  31. 31.
    Takeda T, Yamaguchi Y, Watanabe H (1972) J Phys Soc Jpn 33:967–969CrossRefGoogle Scholar
  32. 32.
    Alexandrov VE, Kotomin EA, Maier J, Evarestov RA (2008) J Chem Phys 129:214704CrossRefGoogle Scholar
  33. 33.
    Torrance J, Lacorre P, Nazzal A, Ansaldo E, Niedermayer C (1992) Phys Rev B 45:8209–8212CrossRefGoogle Scholar
  34. 34.
    Hong WT, Welsch RE, Shao-Horn Y (2016) J Phys Chem C 120:78–86CrossRefGoogle Scholar
  35. 35.
    Zhu M, Komissinskiy P, Radetinac A, Vafaee M, Wang Z, Alff L (2013) Appl Phys Lett 103:141902CrossRefGoogle Scholar
  36. 36.
    Goodenough JB, Zhou J-S (1998) Chem Mater 10:2980–2993CrossRefGoogle Scholar
  37. 37.
    Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernandez-Díaz M, Fauth F, Trounov V (1998) Phys Rev B 57:456–464CrossRefGoogle Scholar
  38. 38.
    Alonso JA, Martínez-Lope MJ, Rasines I (1995) J Solid State Chem 120:170–174CrossRefGoogle Scholar
  39. 39.
    Prodi A, Gilioli E, Cabassi R, Bolzoni F, Licci F, Huang Q, Lynn JW, Affronte M, Gauzzi A, Marezio M (2009) Phys Rev B 79:85105CrossRefGoogle Scholar
  40. 40.
    Liu XJ, Lv SH, Pan E, Meng J, Albrecht JD (2010) J Phys Condens Matter 22:246001CrossRefGoogle Scholar
  41. 41.
    Yamada I, Fujii H, Takamatsu A, Ikeno H, Wada K, Tsukasaki H, Kawaguchi S, Mori S, Yagi S (2017) Adv Mater 29:1603004CrossRefGoogle Scholar
  42. 42.
    Johnson RD, Chapon LC, Khalyavin DD, Manuel P, Radaelli PG, Martin C (2012) Phys Rev Lett 108:67201CrossRefGoogle Scholar
  43. 43.
    Perks NJ, Johnson RD, Martin C, Chapon LC, Radaelli PG (2012) Nat Commun 3:1277CrossRefGoogle Scholar
  44. 44.
    Musa Saad H-E M (2017) J Sci Adv Mater Devices 2:115–122CrossRefGoogle Scholar
  45. 45.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  46. 46.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  47. 47.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  48. 48.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  49. 49.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  50. 50.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406CrossRefGoogle Scholar
  51. 51.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509CrossRefGoogle Scholar
  52. 52.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  53. 53.
    Yamada I, Shiro K, Etani H, Marukawa S, Hayashi N, Mizumaki M, Kusano Y, Ueda S, Abe H, Irifune T (2014) Inorg Chem 53:10563–10569CrossRefGoogle Scholar
  54. 54.
    Li Z, Tse JS, You S, Jin CQ, Iitaka T (2011) Int J Mod Phys B 25:3409–3414CrossRefGoogle Scholar
  55. 55.
    Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ryan Sharpe
    • 1
  • Julen Munarriz
    • 2
  • Tingbin Lim
    • 1
  • Yunzhe Jiao
    • 1
  • J. W. Niemantsverdriet
    • 1
    • 3
  • Victor Polo
    • 2
  • Jose Gracia
    • 1
    • 3
  1. 1.SynCat@Beijing, Synfuels China Technology Co. Ltd.Beijing-HuairouPeople’s Republic of China
  2. 2.Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
  3. 3.SynCat@Differ, Syngaschem BVEindhovenThe Netherlands

Personalised recommendations