Skip to main content

Advertisement

Log in

Performance of Ni/MgO–AN catalyst in high pressure CO2 reforming of methane

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic activity of 8.8 wt Ni/MgO–AN prepared from alcogel derived MgO was studied for the dry reforming of methane under high pressure (1.5 MPa). The catalyst showed a self-stabilization process during the reaction that lasted for 50 h, in which the catalytic activity decreased with increasing the reaction time on stream (TOS) up to 12 h, and then became stabilized thereafter. The activity decline during the initial 12 h of the reaction was found closely related to an increase in the amount of carbon deposits on the catalyst, which also became stabilized after the catalyst had served the reaction for 12 h. Comprehensive characterizations of the coked catalyst with Temprature programmed hydrogenation (TPH), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRD) techniques revealed two kinds of carbon deposits (α-carbon and β-carbon) on the used catalyst. The α-carbon deposits were found to be produced from CH<inf>4</inf> decomposition while the β-carbon deposits from CO disproportionation. It was revealed that the accumulation of β-carbon deposits was a key cause for the activity decline and the self-stabilized catalysis during the initial 12 h of the high-pressure reaction. Moreover, it was also observed that an unavoidable sintering of metallic Ni particles from 6.5 to 11 nm, which happened within the very first hour of the reaction, was not directly related to the catalyst stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Seok S.H. Choi E.D. Park S.H. Han J.S. Lee (2002) J. Catal 209 6

    Google Scholar 

  2. Z.P. Hao H.Y. Zhu G.Q. Lu (2003) Appl. Catal. A 242 275

    Google Scholar 

  3. J.B. Wang S.Z. Hsiao T.J. Huang (2003) Appl. Catal. A. 246 197

    Google Scholar 

  4. J.X. Wang Y. Liu T.X. Cheng W.X. Li Y.L. Bi K.J. Zhen (2003) Appl. Catal. A 250 13

    Google Scholar 

  5. J.A.C. Dias J.M. Assaf (2003) Catal. Today 85 59

    Google Scholar 

  6. S. Menad P.F. Aparicio O. Cheri G.A. Ruiz I. Rodriguez-Ramos (2003) Catal. Lett. 89 63

    Google Scholar 

  7. Z.Y. Hou T. Yashima (2003) Catal. Lett. 89 193

    Google Scholar 

  8. Z.W. Liu H.S. Roh K.W. Jun (2003) Ind. J. Eng. Chem. 9 267

    Google Scholar 

  9. K. Asami X.H. Li K. Fujimoto Y. Koyama A. Sakurama N. Kometani Y. Yonezawa (2003) Catal. Today 84 27

    Google Scholar 

  10. M.C.J. Bradford M.A. Vannice (1996) Appl. Catal. A 142 73

    Google Scholar 

  11. Y.G. Chen K. Tomishige K. Yokoyama K. Fujimoto (1999) J. Catal. 184 479

    Google Scholar 

  12. Y.H. Hu E. Ruckenstein (2002) Catal. Rev. 44 423

    Google Scholar 

  13. E. Ruckenstein Y.H. Hu (1995) Appl. Catal. A. 133 149

    Google Scholar 

  14. K. Tomishge O. Yamazaki Y.G. Chen K. Yokoyama X.H. Li K. Fujimoto (1998) Catal. Today 45 35

    Google Scholar 

  15. B.Q. Xu J.M. Wei H.Y. Wang K.Q. Sun Q.M. Zhu (2001) Catal. Today 68 217

    Google Scholar 

  16. Nagaoka K., Takanabe K., Aika K. Chem. Commun. (2002) 1006.

  17. K. Tomishige Y. Himeno Y. Matsuo Y. Yoshinaga K. Fujimoto (2000) Ind. Eng. Chem. Res. 39 1891

    Google Scholar 

  18. K. Nagaoka K. Takanabe K. Aika (2003) Appl. Catal. A. 255 13

    Google Scholar 

  19. D. Chen R. Lφdeng A. Anundskås O. Olsvik A. Holmen (2001) Chem. Eng. Sci. 56 1371

    Google Scholar 

  20. A.J. Brungs A.P.E. York J.B. Claridge C. Marquez-Alvarez M.L.H. Green (2000) Catal. Lett. 70 117

    Google Scholar 

  21. J.N. Armor D.J. Martenak (2001) Appl. Catal. A. 206 231

    Google Scholar 

  22. Pan W., Song C.S. (2000). Abstracts of Papers of the Am. Chem. Soc. Petr Part 2 Mar 26 2000.

  23. K. Nagaoka M. Okamura K. Aika (2001) Catal. Commun. 2 255

    Google Scholar 

  24. J.B. Claridge A.P.E. York A.J. Brungs C. Marquez-Alvarez J. Sloan S.C. Tsang M.L.H. Green (1998) J. Catal 180 85

    Google Scholar 

  25. A. Shamsi C.D. Johnson (2003) Catal. Today 84 17

    Google Scholar 

  26. Q.J. Zhang D.H. He J.L. Li B.Q. Xu Y. Liang Q.M. Zhu (2002) Catal. Appl. A. 224 201

    Google Scholar 

  27. B.Q. Xu J.M. Wei Y.T. Yu J.L. Li Q.M. Zhu (2003) Top Catal. 22 77

    Google Scholar 

  28. Z.L. Zhang V.A. Tsipouriari A.M. Efstathiou X.E. Verykios (1996) J Catal 158 51

    Google Scholar 

  29. B.Q. Xu J.M. Wei Y.T. Yu Y. Li J.L. Li Q.M. Zhu (2003) Phys J. Chem B. 107 5203

    Google Scholar 

  30. Y.G. Chen K. Tmmishige K. Fujimoto (1997) Appl. Catal. 161 L11

    Google Scholar 

  31. K. Tomishige Y.G. Chen K. Fujimoto (1999) J. Catal 181 91

    Google Scholar 

  32. K. Nagaoka K. Seshan K. Aika J.A. Lercher (2001) J. Catal 197 34

    Google Scholar 

  33. Z.Y. Hou O. Yokota T. Tanaka T. Yahima (2003) Catal. Lett. 89 121

    Google Scholar 

  34. S.B. Wang G.Q. Lu (1998) Appl. Catal. A. 169 271

    Google Scholar 

  35. Y. Liu T.X. Cheng D.M. Li P.B. Jiang J.X. Wang W.X. Li Y.L. Bi K.J. Zhen (2003) Catal. Lett. 85 101

    Google Scholar 

  36. F.B. Noronha1 E.C. Fendley R.R. Soares W.E. Alvarez D.E. Resasco (2001) Chem. Eng. J. 82 21

    Google Scholar 

  37. Z.L. Zhang X.E. Verykios (1994) Catal. Today 21 589

    Google Scholar 

  38. H.M. Swaan V.C.H. Koll G.A. Martin C. Mirodatos (1994) Catal. Today 21 571

    Google Scholar 

  39. K. Otsuka H. Ogihara S. Takenaka (2003) Carbon 41 223

    Google Scholar 

  40. S. Takenaka H. Ogihara K. Otsuka (2002) J. Catal 208 54

    Google Scholar 

  41. M. Ito T. Tagawa S. Goto (1999) Appl. Catal. A. 177 15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Qing Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Wang, H., Li, Y. et al. Performance of Ni/MgO–AN catalyst in high pressure CO2 reforming of methane. Top Catal 32, 109–116 (2005). https://doi.org/10.1007/s11244-005-2882-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-2882-9

Keywords

Navigation