Synthesis, structures and magnetic properties of copper(II) complexes with 1,2,3-triazole derivate as ligand: a single-crystal-to-single-crystal transformation from mononuclear to polymeric complex of copper(II)

Abstract

A new mononuclear complex Cu(tdp)Br2·MeCN (1, tdp = 2,2′-(1H-1,2,3-triazole-1,4-diyl)dipyridine) has been synthesized, which can transform to a 1D coordination polymer [Cu(tdp)Br2]n (2) under ambient conditions through an irreversible single-crystal-to-single-crystal transformation process. The loss of lattice MeCN molecules in 1 was accompanied by the generation of new covalent bonds and an increase in dimensionality from 0 to 1D, leading to a change in magnetic exchange couplings between the adjacent Cu(II) ions. Magnetic susceptibility measurements indicate that 1 exhibits ferromagnetic interactions between the adjacent Cu(II) centers, while the intrachain magnetic interactions between Cu(II) ions are antiferromagnetic within 2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Song XZ, Song SY, Zhao SN, Hao ZM, Zhu M, Meng X, Wu LL, Zhang HJ (2014) Single-crystal-to-single-crystal transformation of a europium(III) metal-organic framework producing a multi-responsive luminescent sensor. Adv Funct Mater 24:4034–4041

    CAS  Google Scholar 

  2. 2.

    Jassal AK, Sharma S, Hundal G, Hundal MS (2015) Structural diversity, thermal studies, and luminescent properties of metal complexes of dinitrobenzoates: a single crystal to single crystal transformation from dimeric to polymeric complex of copper(II). Cryst Growth Des 15:79–93

    CAS  Google Scholar 

  3. 3.

    Jin M, Sumitani T, Sato H, Seki T, Ito H (2018) Mechanical-stimulation-triggered and solvent-vapor-induced reverse single-crystal-to-single-crystal phase transitions with alterations of the luminescence color. J Am Chem Soc 140:2875–2879

    CAS  PubMed  Google Scholar 

  4. 4.

    Lee K, Lai PN, Parveen R, Donahue CM, Wymore MM, Massman BA, Vlaisavljevich B, Teets TS, Daly SR (2020) Modifying the luminescent properties of a Cu(I) diphosphine complex using ligand-centered reactions in single crystals. Chem Commun. https://doi.org/10.1039/D0CC03427D

    Article  Google Scholar 

  5. 5.

    De Bellis J, Bellucci L, Bottaro G, Labella L, Marchetti F, Samaritani S, Dell’Amico DB, Armelao L (2020) Single-crystal-to-single-crystal post-synthetic modifications of three-dimensional LOFs (Ln=Gd, Eu): a way to modulate their luminescence and thermometric properties. Dalton Trans 49:6030–6042

    PubMed  Google Scholar 

  6. 6.

    Kim Y, Das S, Bhattacharya S, Hong S, Kim MG, Yoon M, Natarajan S, Kim K (2012) Metal-ion metathesis in metal-organic frameworks: a synthetic route to new metal-organic Frameworks. Chem-Eur J 18:16642–16648

    CAS  PubMed  Google Scholar 

  7. 7.

    Yang XF, Liu M, Zhu HB, Hang C, Zhao Y (2017) Syntheses, structures, and magnetic properties of two unique Cu(II)-based coordination polymers involving a crystal-to-crystal structural transformation from a 1D chain to a 3D network. Dalton Trans 46:17025–17031

    CAS  PubMed  Google Scholar 

  8. 8.

    Chen WB, Chen YC, Huang GZ, Liu JL, Jia JH, Tong ML (2018) Cyclic off/part/on switching of single-molecule magnet behaviours via multistep single-crystal-to-single-crystal transformation between discrete Fe(II)–Dy(III) complexes. Chem Commun 54:10886–10889

    CAS  Google Scholar 

  9. 9.

    Clements JE, Airey PR, Ragon F, Shang V, Kepert CJ, Neville SM (2018) Guest-adaptable spin crossover properties in a dinuclear species underpinned by supramolecular interactions. Inorg Chem 57:14930–14938

    CAS  PubMed  Google Scholar 

  10. 10.

    Sato O, Tao J, Zhang YZ (2007) Control of magnetic properties through external stimuli. Angew Chem Int Ed 46:2152–2187

    CAS  Google Scholar 

  11. 11.

    Wang LF, Qiu JZ, Liu JL, Chen YC, Jia JH, Jover J, Ruiz E, Tong ML (2015) Modulation of single-molecule magnet behaviour via photochemical [2 + 2] cycloaddition. Chem Commun 51:15358–15361

    CAS  Google Scholar 

  12. 12.

    Tian H, Su JB, Bao SS, Kurmoo M, Huang XD, Zhang YQ, Zheng LM (2018) Reversible ON–OFF switching of single-molecule-magnetism associated with single-crystal-to-single-crystal structural transformation of a decanuclear dysprosium phosphonate. Chem Sci 9:6424–6433

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Huang XD, Xu Y, Fan K, Bao SS, Kurmoo M, Zheng LM (2018) Reversible SC-SC transformation involving [4 + 4] cycloaddition of anthracene: a single-ion to single-molecule magnet and yellow-green to blue-white emission. Angew Chem Int Ed 57:8577–8581

    CAS  Google Scholar 

  14. 14.

    Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhang JP, Liao PQ, Zhou HL, Lin RB, Chen XM (2014) Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem Soc Rev 43:5789–5814

    CAS  PubMed  Google Scholar 

  16. 16.

    Meng Y, Dong YJ, Yan Z, Chen YC, Song XW, Li QW, Zhang CL, Ni ZP, Tong ML (2018) A new porous three-dimensional Iron(II) coordination polymer with solvent-induced reversible spin-crossover behavior. Cryst Growth Des 18:5214–5219

    CAS  Google Scholar 

  17. 17.

    Liu ZY, Zhao H, Song WC, Wang XG, Liu ZY, Zhao XJ, Yang EC (2019) A dynamic microporous magnet exhibiting room-temperature thermal hysteresis, variable magnetic ordering temperatures and highly selective adsorption for CO2. J Mater Chem C 7:218–222

    CAS  Google Scholar 

  18. 18.

    Li B, Wei RJ, Tao J, Huang RB, Zheng LS, Zheng Z (2010) Solvent-induced transformation of single crystals of a spin-crossover (SCO) compound to single crystals with two distinct SCO centers. J Am Chem Soc 132:1558–1566

    CAS  PubMed  Google Scholar 

  19. 19.

    Wei RJ, Tao J, Huang RB, Zheng LS (2011) Reversible and irreversible vapor-induced guest molecule exchange in spin-crossover compounds. Inorg Chem 50:8553–8564

    CAS  PubMed  Google Scholar 

  20. 20.

    Chaudhary A, Mohammad A, Mobin SM (2017) Recent advances in single-crystal-to-single-crystal transformation at the discrete molecular level. Cryst Growth Des 17:2893–2910

    CAS  Google Scholar 

  21. 21.

    Chen WB, Chen YC, Yang M, Tong ML, Dong W (2018) Water molecule induced reversible single-crystal-to-single-crystal transformation between two trinuclear Fe(II) complexes with different spin crossover behaviour. Dalton Trans 47:4307–4314

    CAS  PubMed  Google Scholar 

  22. 22.

    Tu J, Chen H, Tian H, Yu X, Zheng B, Zhang S, Ma P (2020) Temperature-induced structural transformations accompanied by changes in magnetic properties of two copper coordination polymers. CrystEngComm 22:3482–3488

    CAS  Google Scholar 

  23. 23.

    Kolea GK, Vittal JJ (2013) Solid-state reactivity and structural transformations involving coordination polymers. Chem Soc Rev 42:1755–1775

    Google Scholar 

  24. 24.

    He WW, Li SL, Lan YQ (2018) Liquid-free single-crystal to single-crystal transformations in coordination polymers. Inorg Chem Front 5:279–300

    CAS  Google Scholar 

  25. 25.

    Dmitrienko AO, Buzin MI, Setifi Z, Setifi F, Alexandrov EV, Voronova ED, Vologzhanina AV (2020) Solid-state 1D → 3D transformation of polynitrile-based coordination polymers by dehydration reaction. Dalton Trans 49:7084–7092

    CAS  PubMed  Google Scholar 

  26. 26.

    Crowley JD, Bandeen PH, Hanton LR (2010) A one pot multi-component CuAAC “click” approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: synthesis, X-ray structures and copper(II) and silver(I) complexes. Polyhedron 29:70–83

    CAS  Google Scholar 

  27. 27.

    Prabhath MRR, Romanova J, Curry RJ, Silva SRP, Jarowski PD (2015) The role of substituent effects in tuning metallophilic interactions and emission energy of bis-4-(2-pyridyl)-1,2,3-triazolatoplatinum(II) complexes. Angew Chem Int Ed 54:7949–7953

    CAS  Google Scholar 

  28. 28.

    Zhang Y, Chen Y, Zhou S, Meng X, Jia L, Chen Y (2017) Synthesis, structure and properties of a new NH-1,2,3-triazole-based octanuclear copper(II) complex. Inorg Chem Commun 84:159–163

    CAS  Google Scholar 

  29. 29.

    Conradie J, Conradie MM, Tawfiq KM, Coles SJ, Tizzard GJ, Wilson C, Potgieter JH (2018) Jahn–teller distortion in 2-pyridyl-(1,2,3)-triazole-containing copper(II) compounds. New J Chem 42:16335–16345

    CAS  Google Scholar 

  30. 30.

    Haasnoot JG (2000) Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coord Chem Rev 200–202:131–185

    Google Scholar 

  31. 31.

    Aromí G, Barrios LA, Roubeaub O, Gamez P (2011) Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coord Chem Rev 255:485–546

    Google Scholar 

  32. 32.

    Liu JY, Wang Q, Zhang LJ, Yuan B, Xu YY, Zhang X, Zhao CY, Wang D, Yuan Y, Wang Y, Ding B, Zhao XJ, Yue MM (2014) Anion-exchange and anthracene-encapsulation within copper(II) and manganese(II)-triazole metal–organic confined space in a single crystal-to-single crystal transformation fashion. Inorg Chem 53:5972–5985

    CAS  PubMed  Google Scholar 

  33. 33.

    Wu XW, Pan F, Yin S, Ge JY, Jin GX, Wang P, Ma JP (2018) Solvent-induced structural transformation and magnetic modulation in 1D copper(II) polymers based on a semi-rigid ligand containing 4-amino-1,2,4-triazole. CrystEngComm 20:3955–3959

    CAS  Google Scholar 

  34. 34.

    Schweinfurth D, Sommer MG, Atanasov M, Demeshko S, Hohloch S, Meyer F, Neese F, Sarkar B (2015) The ligand field of the azido ligand: insights into bonding parameters and magnetic anisotropy in a Co(II)–Azido Complex. J Am Chem Soc 137:1993–2005

    CAS  PubMed  Google Scholar 

  35. 35.

    Schweinfurth D, Hettmanczyk L, Suntrup L, Sarkar B (2017) Metal complexes of click-derived triazoles and mesoionic carbenes: electron transfer, photochemistry, magnetic bistability, and catalysis: metal complexes of click-derived triazoles and mesoionic carbenes: electron transfer, photochemistry, magnetic bistability, and catalysis. Z Anorg Allg Chem 643:554–584

    CAS  Google Scholar 

  36. 36.

    Chen Y, Chen XL, Chen Y, Jia L, Zeng MH (2017) Design, structure and magnetic properties of a novel one-dimensional Mn(II) coordination polymer constructed from 4-pyridyl-NH-1,2,3-triazole. Inorg Chem Commun 84:182–185

    CAS  Google Scholar 

  37. 37.

    Liu X, Chen M, Jiang X, Chen Y, Chen Y, Chen S, Jia L (2020) Two new 4-coordinate Cu(II) chains with 1,2,3-triazole derivate as bridging ligand: Synthesis, structures and magnetic properties. J Mol Struct 1217:128165

    CAS  Google Scholar 

  38. 38.

    McCarney EP, Hawes CS, Blascoa S, Gunnlaugsson T (2016) Synthesis and structural studies of 1,4-di(2-pyridyl)-1,2,3-triazole dpt and its transition metal complexes; a versatile and subtly unsymmetric ligand. Dalton Trans 45:10209–10221

    CAS  PubMed  Google Scholar 

  39. 39.

    Jindabot S, Teerachanan K, Thongkam P, Kiatisevi S, Khamnaen T, Phiriyawirut P, Charoenchaidet S, Sooksimuang T, Kongsaeree P, Sangtrirutnugul P (2014) Palladium(II) complexes featuring bidentate pyridine–triazole ligands: synthesis, structures, and catalytic activities for Suzuki–Miyaura coupling reactions. J Organomet Chem 750:35–40

    CAS  Google Scholar 

  40. 40.

    Valencia M, Müller-Bunz H, Gossage RA, Albrecht M (2016) Enhanced product selectivity promoted by remote metal coordination in acceptor-free alcohol dehydrogenation catalysis. Chem Commun 52:3344–3347

    CAS  Google Scholar 

  41. 41.

    Thongkam P, Jindabot S, Prabpai S, Kongsaeree P, Wititsuwannakul T, Surawatanawong P, Sangtrirutnugul P (2015) Pyridine–triazole ligands for copper-catalyzed aerobic alcohol oxidation. RSC Adv 5:55847–55855

    CAS  Google Scholar 

  42. 42.

    Hu Q, Liu Y, Deng X, Li Y, Chen Y (2016) Aluminium(III) chloride-catalyzed three-component condensation of aromatic aldehydes, nitroalkanes and sodium azide for the synthesis of 4-aryl-NH-1,2,3-TRIAZOLES. Adv Synth Catal 358:1689–1693

    CAS  Google Scholar 

  43. 43.

    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    CAS  Google Scholar 

  44. 44.

    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8

    Google Scholar 

  45. 45.

    Dolomanov OV, Bourhis LJ, Gildea RJ, Howad JAK, Puschmann M (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341

    CAS  Google Scholar 

  46. 46.

    Kahn O (1993) Molecular Magnetism. VCH Publishers, New York

    Google Scholar 

  47. 47.

    Baker GA, Rushbrooke GS, Gilbert HE (1964) High-temperature series expansions for the spin-1/2 Heisenberg model by the method of irreducible representations of the symmetric group. Phys Rev 135:1272–1277

    Google Scholar 

  48. 48.

    Shi XX, Chen QJ, Chen XL, Zhang Y, Kurmooc M, Zeng MH (2019) Monitoring fragmentation and oligomerization of a di-μ-methoxo bridged copper(II) complex: structure, mass spectrometry, magnetism and DFT studies. Dalton Trans 48:13094–13100

    CAS  PubMed  Google Scholar 

  49. 49.

    Escuer A, Vicente R, Mernari B, Gueddi AE, Pierrot M (1997) Syntheses, structure, and magnetic behavior of two new nickel(II) and cobalt(II) dinuclear complexes with 1,4-dicarboxylatopyridazine. MO calculations of the superexchange pathway through the pyridazine bridge. Inorg Chem 36:2511–2516

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21002076, 21441007), the Open Fund Project NO. KLSAOFM1709 of Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University and the Science Foundation of Wuhan Institute of Technology (19QD37).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sihuai Chen or Lihui Jia.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouyang, F., Jiang, X., Liu, X. et al. Synthesis, structures and magnetic properties of copper(II) complexes with 1,2,3-triazole derivate as ligand: a single-crystal-to-single-crystal transformation from mononuclear to polymeric complex of copper(II). Transit Met Chem (2021). https://doi.org/10.1007/s11243-021-00448-6

Download citation