A ruthenium(II) complex with a methylated polypyridine ligand: synthesis, DNA binding, and antiproliferation activity

  • Yihui Jiang
  • Keke Chai
  • Tianzhi Han
  • Wei Zhang
  • Siyao Chen
  • Xiaoyu Xu
  • Linqing Nong
  • Yuanhua You
  • Jintao WangEmail author


A ruthenium polypyridine complex, [Ru(mptpy)(Mmptpy)Cl][PF6]2 (Ru1, mptpy = 4-(4-methylphenyl)-2,2′,6′,2″-mptpyridine, Mmptpy = 2-[4-(4-methylphenyl)-2,2′-bipyridin-6-yl]-1-methylpyridinum), was synthesised and characterised. The structure of the complex was determined by single-crystal X-ray crystallography. The ruthenium(II) core has an octahedral coordination environment. The interactions of the complex with DNA were analysed by UV–Vis and fluorescence spectroscopy, revealing a high binding affinity for double-stranded DNA. DNA photocleavage studies monitored by agarose gel electrophoresis showed that the complex cleaved DNA efficiently, whilst mechanistic studies showed that the complex produced reactive oxygen species including singlet oxygen, superoxide anions, and carbon-based radicals that cleave DNA. The complex also showed notable antiproliferation activity towards cancer cells in methyl thiazolyl tetrazolium assays.



We thank the Jiangxi Provincial Key Laboratory of Drug Design and Evaluation (20171BCD40015), Natural Science Foundation of Jiangxi Province (20181BAB213001), Graduate Students’ Science and Technology Innovation Project of Jiangxi Science & Technology Normal University (YC2017-X22), and College Students’ Science and Technology Innovation Project of Jiangxi Science & Technology Normal University (20181203021).

Supplementary material

11243_2019_336_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1143 kb)


  1. 1.
    Sun RWY, Ma DL, Wong ELM, Che CM (2007) Dalton Trans 43:4884–4892Google Scholar
  2. 2.
    Suo JJ, Ma ZY, Xu JY, Tian JL, Liu X (2018) Appli Organomet Chem 32:3911–3923CrossRefGoogle Scholar
  3. 3.
    Muthuraj V, Umadevi M (2018) J Mol Struct 1157:201–209CrossRefGoogle Scholar
  4. 4.
    Cristina M, Huang HY, Riccardo R, Marcus S, Frank W, Chao H, Gilles G (2017) Eur J Org Chem 12:610–1745Google Scholar
  5. 5.
    Qiu K, Wang J, Song C, Wang L, Zhu H, Huang H, Huang J, Wang H, Ji L, Chao H (2017) ACS Appl Mater Inter 9:18482–18492CrossRefGoogle Scholar
  6. 6.
    Heinemann F, Karges J, Gasser G (2017) Acc Chem Res 50:2727–2736CrossRefGoogle Scholar
  7. 7.
    Ouyang M, Zeng LL, Qiu KQ, Chen Y, Ji LN, Chao H (2017) Eur J Org Chem 12:1589–1764Google Scholar
  8. 8.
    Zhang Y, Zhou Q, Tian N, Li C, Wang X (2017) Inorg Chem 4:1865–1873CrossRefGoogle Scholar
  9. 9.
    Brunner J, Barton JK (2006) J Am Chem Soc 128:6772–6773CrossRefGoogle Scholar
  10. 10.
    Reichardt C, Schneider KRA, Sainuddin T, Wachtler M, McFarland SA, Dietzek B (2017) J Phys Chem A 121:5635–5644CrossRefGoogle Scholar
  11. 11.
    Zeglis BM, Pierre VC, Barton JK (2007) Chem Commun 44:4565–4579CrossRefGoogle Scholar
  12. 12.
    Monro S, Colon KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA (2018) Chem Rev 119:797–828CrossRefGoogle Scholar
  13. 13.
    Benjamin JC, Madeleine H, James R, Sergio S, Martyn KP, Nigel SS (2015) Dalton Trans 44:20392–20405CrossRefGoogle Scholar
  14. 14.
    Koizumi T, Tomon T, Tanaka K (2005) J Organomet Chem 690:1258–1264CrossRefGoogle Scholar
  15. 15.
    Emmerling F, Bricks JL, Resch-Genger U, Kraus W, Schulz B, Li YQ, Reck G (2008) J Mol Struct 874:14–27CrossRefGoogle Scholar
  16. 16.
    Guardigli M, Flamigni L, Barigelletti F, Richards CSW, Ward MD (1996) J Phys Chem 100:10620–10628CrossRefGoogle Scholar
  17. 17.
    Cleary RL, Bardwell DA, Murray M, Jeffery JC, Ward MD (1997) J Chem Soc. Perkin Trans 2(11):2179–2184CrossRefGoogle Scholar
  18. 18.
    Koizumi T, Tomon T, Tanaka K (2003) Organometallics 22:970–975CrossRefGoogle Scholar
  19. 19.
    Jiang YH, Chai KK, Sun Y, Pang QW, Liu XL, Shi M, Wang J, Wei J, Liu D, Wang JT (2019) Heterocycles 98:387–394CrossRefGoogle Scholar
  20. 20.
    Tarushi A, Kakoulidou C, Raptopoulou CP, Psycharis V, Kessissoglou DP, Zoi I, Papadopoulos AN, Psomas G (2017) J Inorg Biochem 170:85–97CrossRefGoogle Scholar
  21. 21.
    Liu YX, Mo HW, Lv ZY, Shen F, Zhang CL, Qi YY, Mao ZW, Le XY (2018) Transit Metal Chem 43:259–271CrossRefGoogle Scholar
  22. 22.
    LePecq JB, Paoletti C (1967) J Mol Biol 27:87–106CrossRefGoogle Scholar
  23. 23.
    Chai KK, Jiang YH, Han TZ, Niu JL, Yao LS, Zhang HZ, Zeng M, Zhang L, Duan XM, Wang JT (2019) Polyhedron 157:124–130CrossRefGoogle Scholar
  24. 24.
    Chai KK, Kuang WH, Lan Z, Zhang L, Jiang YH, Han TZ, Niu JN, Wang JT, Duan XM (2019) J Inorg Biochem 192:17–24CrossRefGoogle Scholar
  25. 25.
    E-Batal H, Rocha JM, Méndez PF, GodÍnez LA, Guo K, Li XP, Lu XC, Wesdemiotis C, Moorefield CN, Newkome GR (2015) Heterocycles 90:502–514Google Scholar
  26. 26.
    Sheldrick GM (2015) Acta Crystallogr Sect C-Struct 71:3765–3768Google Scholar
  27. 27.
    Kumar C, Asuncion EH (1993) J Am Chem Soc 115:8547–8553CrossRefGoogle Scholar
  28. 28.
    Rosu F, De Pauw E, Guittat L, Alberti P, Lacroix L, Mailliet P, Riou J-F, Mergny J-L (2003) Biochemistry 42:10361–10371CrossRefGoogle Scholar
  29. 29.
    Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G (2011) J Inorg Biochem 105:476–489CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of PharmacyJiangxi Science & Technology Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations