Skip to main content
Log in

Synthesis, characterization, photophysical, and redox properties of three trinuclear Ru(II) polypyridyl complexes possessing 5-amino-1,10-phenanthroline ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three ruthenium(II) polypyridyl complexes with 5-amino-1,10-phenanthroline ligands have been successfully designed and synthesized. They have been fully characterized by ESI-MS, ESI-HRMS, 1H NMR, and elemental analyses. The photophysical and electrochemical properties of the three complexes have been investigated in organic solvent. The geometrical configuration and the electron density distribution in the frontier molecular orbitals of the three complexes have been studied. The three complexes show metal-to-ligand charge transfer (1MLCT) absorption at 445 nm, and intense triplet metal-to-ligand (3MLCT) emission at around 619 nm in fluid solution at 298 K and 580 nm in low-temperature glass. Electrochemical studies of the three complexes are consistent with one RuIII/II reversible couple at around 1.31 V accompanied by three ligand-centered reduction couples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gill MR, Garcia-Lara J, Foster SJ, Smythe C, Battaglia G, Thomas JA (2009) Nat Chem 1:662–667

    Article  CAS  PubMed  Google Scholar 

  2. Kohler L, Nease L, Vo P, Garofolo J, Heidary DK, Thummel RP, Glazer EC (2018) Inorg Chem 56:12214–12223

    Article  CAS  Google Scholar 

  3. Hurley DJ, Tor Y (2002) J Am Chem Soc 124:3749–3762

    Article  CAS  PubMed  Google Scholar 

  4. Li G, Swords WB, Meyer GJ (2017) J Am Chem Soc 139:14983–14991

    Article  CAS  PubMed  Google Scholar 

  5. Wehlin SAM, Gautier LT, Li G, Meyer GJ (2017) J Am Chem Soc 139:12903–12906

    Article  CAS  PubMed  Google Scholar 

  6. Matheu R, Hernandez IAM, Sala X, Gray HB, Brunschwig BS, Llobet A, Lewis NS (2017) J Am Chem Soc 139:11345–11348

    Article  CAS  PubMed  Google Scholar 

  7. Gao Q, Zhang W, Song B, Zhang R, Guo W, Yuan J (2017) Anal Chem 89:4517–4524

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki T, Tanaka H, Shiota Y, Sajith PK, Arikawa Y, Yoshizawa K (2015) Inorg Chem 54:7181–7191

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Hao Z, Zhang F, Li H (2016) ACS Appl Mater Interfaces 8:12141–12148

    Article  CAS  PubMed  Google Scholar 

  10. Farnum BH, Morseth ZA, Lapides AM, Rieth AJ, Hoertz PG, Brennaman MK, Papanikolas JM, Meyer TJ (2016) J Am Chem Soc 136:2208–2211

    Article  CAS  Google Scholar 

  11. Sun W, Sun S, Jiang N, Wang H, Peng X (2016) Organometallics 34:3385–3389

    Article  CAS  Google Scholar 

  12. Farran R, Jouvenot D, Gennaro B, Loiseau F, Chauvin J, Deronzier A (2016) ACS Appl Mater Interfaces 8:16136–16146

    Article  CAS  PubMed  Google Scholar 

  13. Cheng F, He C, Yu S (2017) Transit Met Chem 42:395–403

    Article  CAS  Google Scholar 

  14. Obali AY, Ucan HI (2015) J Fluoresc 25:647–655

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Lv Z, Hua C, Leong CF, Tuna F, Alessandro DMD, Collison D, Zuo J (2016) Inorg Chem 55:4606–4615

    Article  CAS  PubMed  Google Scholar 

  16. Holtzer L, Oleinich I, Anzola M, Lindberg E, Sadhu KK, Gaitan MG, Winssinger N (2016) ACS Cent Sci 2:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hara D, Komatsu H, Son A, Nishimoto S, Tanabe K (2015) Bioconjugate Chem 26:645–649

    Article  CAS  Google Scholar 

  18. Cheng KY, Wang SC, Chen YS, Chan YT (2018) Inorg Chem 57:3559–3567

    Article  CAS  PubMed  Google Scholar 

  19. Ducrot AB, Coulson BA, Perutz RN, Anne-Kathrin D (2016) Inorg Chem 55:12583–12594

    Article  CAS  PubMed  Google Scholar 

  20. Vilvamani N, Gupta RD, Awasthi SK (2015) RSC Adv 5:13451–13461

    Article  CAS  Google Scholar 

  21. Nathan PC, Kiri K, Laura S, Angel AM (2012) J Am Chem Soc 51:20776–20782

    Google Scholar 

  22. Nakazaki M, Yamamoto K, Toya T (1981) J Org Chem 46:1611–1615

    Article  CAS  Google Scholar 

  23. Fourmigue M, Johannsen L, Boubekeur K, Nelson C, Batail P (1993) J Am Chem Soc 115:3752–3759

    Article  CAS  Google Scholar 

  24. Cheng F, Chen J, Wang F, Tang N, Chen L (2011) Z Anorg Allg Chem 636:766–772

    Article  CAS  Google Scholar 

  25. Zavada J, Pankova M, Holy P, Tichy M (1994) Synthesis 11:1132–1132

    Google Scholar 

  26. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  27. Becke ADJ (1993) Chem Phys 98:1372–1377

    CAS  Google Scholar 

  28. Cheng F, Yu S, Ren M, He C, Yin H (2016) Transit Met Chem 41:305–314

    Article  CAS  Google Scholar 

  29. Dearmond MK, Hillis JE (1971) J Chem Phys 54:2247–2253

    Article  CAS  Google Scholar 

  30. Bomben GP, Robson KC, Sedach PA, Berlinguette CP (2009) Inorg Chem 48:9631–9643

    Article  CAS  PubMed  Google Scholar 

  31. Guerzo AD, Mesmaeker AK (1997) J Phys Chem B 101:7012–7021

    Article  CAS  Google Scholar 

  32. Amouyal E, Homsi A, Chambron JC, Sauvage JP (1990) J Chem Soc Dalton Trans 6:1841–1845

    Article  Google Scholar 

  33. Watts RJ, Crosby GA (1972) J Am Chem Soc 94:2606–2614

    Article  CAS  Google Scholar 

  34. Brown GM, Weaver TR, Keene FR, Meyer TJ (1976) Inorg Chem 15:190–196

    Article  CAS  Google Scholar 

  35. Charbonniere LJ, Ziessel RF, Sams CA (2003) Inorg Chem 42:3466–3478

    Article  CAS  PubMed  Google Scholar 

  36. Staffilani M, Hoss E, Giesen U, Schneider E, Hartl F, Josel HP, Cola LD (2003) Inorg Chem 42:7789–7798

    Article  CAS  PubMed  Google Scholar 

  37. Leveque J, Elias B, Moucheron C, Mesmaeker KD (2005) Inorg Chem 44:393–400

    Article  CAS  PubMed  Google Scholar 

  38. Zhou M, Roovers J (2001) Macromolecules 34:244–252

    Article  CAS  Google Scholar 

  39. Boyde S, Strouse GF, Jones WE, Meyer TJ (2010) J Am Chem Soc 112:7395–7396

    Article  Google Scholar 

  40. Wang Y, Suna A, Mahler W, Kasowski R (1987) J Chem Phys 87:7315–7322

    Article  CAS  Google Scholar 

  41. Lu Y, Ju C, Guo D, Deng Z, Wang K (2007) J Phys Chem C 111:5211–5217

    Article  CAS  Google Scholar 

  42. Barigelletti F, Cola LD, Balzani V, Belser P, Zelewskylc A, Vogtle F, Ebmeyer F, Grammenudi S (1989) J Am Chem Soc 111:4662–4668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Application Basis Research Project of Yunnan Province Science and Technology Department (2016FD079), the scientific research project of Yunnan Province Education department (2017ZDX147), and IRTSTYN for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feixiang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Yu, S., Ma, S. et al. Synthesis, characterization, photophysical, and redox properties of three trinuclear Ru(II) polypyridyl complexes possessing 5-amino-1,10-phenanthroline ligands. Transit Met Chem 44, 515–524 (2019). https://doi.org/10.1007/s11243-019-00309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00309-3

Navigation