Skip to main content
Log in

Homogeneous oxidation reactions catalysed by in situ-generated triazolylidene copper(I) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four new Cu complexes bearing triazolylidene ligands 1-(R)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium-5-yl: R = phenyl (2a), mesitylenyl (2b), propyl (2c), hexyl (2d) (NHC) were synthesised in high yields. Characterisation by spectroscopic and analytical methods confirmed the molecular composition of the complexes as NHC–Cu-I. The complexes 2(a–d) bearing NHC wingtip variations were tested as in situ-generated catalysts for homogeneous oxidation catalysis with H2O2 as oxidant. The in situ technique was adopted for ease of application and to circumvent the poor stability of the complexes in solution. The results showed that the NHC–Cu-I complexes are capable of initiating oxidation reactions, yielding ketones/aldehydes as dominant products for the oxidation of alkanes under optimised reaction conditions, with complexes bearing aliphatic N-substituents showing the highest catalytic activities. Oxidation of toluene with 2c resulted in a mixture of benzaldehyde and benzyl alcohol as the main products. Also, 2c catalysed the oxidation of n-octane, yielding a mixture of mainly C-8 oxidation products with over 75% selectivity for the isomeric octanones. Analysis of regioselectivity indicated that the internal \({\text{C}}_{{sp^{3} }}\)–H bonds of n-octane [especially C(2)] are more reactive than the terminal ones.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Peris E, Crabtree RH (2003) C R Chim 6:33–37

    Article  CAS  Google Scholar 

  2. Periana RA, Bhalla G, Tenn WJ III, Young KJH, Yang Liu X, Mironov O, Jones CJ, Ziatdinov VR (2004) J Mol Catal A Chem 220:7–25

    Article  CAS  Google Scholar 

  3. Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612–3676

    Article  CAS  PubMed  Google Scholar 

  4. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485–496

    Article  CAS  Google Scholar 

  5. Arduengo AJ III, Dias HVR, Harlow RL, Kline M (1992) J Am Chem Soc 114:5530–5534

    Article  CAS  Google Scholar 

  6. Fraser PK, Woodward S (2001) Tetrahedron Lett 42:2747–2749

    Article  CAS  Google Scholar 

  7. Egbert JD, Cazin CSJ, Nolan SP (2013) Catal Sci Technol 3:912–926

    Article  CAS  Google Scholar 

  8. Gao F, McGrath KP, Lee Y, Hoveyda AH (2010) J Am Chem Soc 132:14315–14320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guzman-Martinez A, Hoveyda AH (2010) J Am Chem Soc 132:10634–10637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shintani R, Takatsu K, Takeda M, Hayashi T (2011) Angew Chem Int Ed 50:8656–8659

    Article  CAS  Google Scholar 

  11. Chun J, Lee HS, Jung G, Lee SW, Kim HJ, Son SU (2010) Organometallics 29:1518–1521

    Article  CAS  Google Scholar 

  12. Munz D, Strassner T (2015) Inorg Chem 54:5043–5052

    Article  CAS  PubMed  Google Scholar 

  13. Astakhov AV, Khazipov OV, Degtyareva ES, Khrustalev VN, Chernyshev VM, Ananikov VP (2015) Organometallics 34:5759–5766

    Article  CAS  Google Scholar 

  14. Sobkowiak A, Qui A, Liu X, Llobet A, Sawyer DT (1993) J Am Chem Soc 115:609–614

    Article  CAS  Google Scholar 

  15. Barton DHR, Doller D, Geletii YV (1991) Mendeleev Commun 1:115–116

    Article  Google Scholar 

  16. Kirillov AM, Kopylovich MN, Kirillova MV, Karabach EY, Haukka M, da Silva MFCG, Pombeiro AJL (2006) Adv Synth Catal 348:159–174

    Article  CAS  Google Scholar 

  17. Garcia-Bosch I, Siegler MA (2016) Angew Chem 128:13065–13068

    Article  Google Scholar 

  18. Saravanamurugan S, Palanichamy M, Murugesan V (2004) Appl Catal A 273:143–149

    Article  CAS  Google Scholar 

  19. Mac Leod TCO, Kirillova MV, Pombeiro AJL, Schiavon MA, Assis MD (2010) Appl Catal A Gen 372:191–198

    Article  CAS  Google Scholar 

  20. Huang G, Luo J, Cai C, Guo Y, Luo G (2008) Catal Commun 9:1882–1885

    Article  CAS  Google Scholar 

  21. Mncube SG, Bala MD (2016) J Mol Liq 215:396–401

    Article  CAS  Google Scholar 

  22. Soobramoney L, Bala MD, Friedrich HB (2014) Dalton Trans 43:15968–15978

    Article  CAS  PubMed  Google Scholar 

  23. Ramakrishna D, Bhat BR (2011) Inorg Chem Commun 14:690–693

    Article  CAS  Google Scholar 

  24. Zhu Q, Lian Y, Thyagarajan S, Rokita SE, Karlin KD, Blough NV (2008) J Am Chem Soc 130:6304–6305

    Article  CAS  PubMed  Google Scholar 

  25. Fernandes RR, Lasri J, Guedes da Silva MFC, da Silva JAL, Fraústo da Silva JJR, Pombeiro AJL (2011) Appl Catal A 402:110–120

    Article  CAS  Google Scholar 

  26. Figiel PJ, Kirillov AM, Karabach YY, Kopylovich MN, Pombeiro AJL (2009) J Mol Catal A Chem 305:178–182

    Article  CAS  Google Scholar 

  27. Kirillov AM, Kirillova MV, Shul’pina LS, Figiel PJ, Gruenwald KR, Guedes da Silva MFC, Haukka M, Pombeiro AJL, Shul’pin GB (2011) J Mol Catal A Chem 350:26–34

    Article  CAS  Google Scholar 

  28. Nasani R, Saha M, Mobin SM, Martins LMDRS, Pombeiro AJL, Kirillovc AM, Mukhopadhyay S (2014) Dalton Trans 43:9944–9954

    Article  CAS  PubMed  Google Scholar 

  29. Kozlov YN, Nizova GV, Shul’pin GB (2005) J Mol Catal A Chem 227:247–253

    Article  CAS  Google Scholar 

  30. Shul’pin GB, Drago RS, Gonzalez M (1996) Rus Chem Bull 45:2386–2388

    Article  Google Scholar 

  31. Ciesienski KL, Haas KL, Dickens MG, Tesema YT, Franz KJ (2008) J Am Chem Soc 130:12246–12247

    Article  CAS  PubMed  Google Scholar 

  32. Yacob Z, Shah J, Leistner J, Liebscher J (2008) Synlett 15:2342–2344

    Google Scholar 

  33. Li P, Wang L (2007) Lett Org Chem 4:23–26

    Article  Google Scholar 

Download references

Acknowledgements

This project is generously supported by c*change PAR program, the National Research Foundation and the University of KwaZulu-Natal for which we are grateful (Grant No. PAR08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad D. Bala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mncube, S.G., Bala, M.D. Homogeneous oxidation reactions catalysed by in situ-generated triazolylidene copper(I) complexes. Transit Met Chem 44, 145–151 (2019). https://doi.org/10.1007/s11243-018-0278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0278-5

Navigation