Skip to main content
Log in

Structures and photocatalytic performance of two d10 metal-based coordination polymers containing mixed building units

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The linker 1,4-bis(2-methyl-imidazole-yl)-butane (bib) was used to construct two coordination polymers, specifically [Cd(bib)(ipa)]n (1) and [Zn(bib)(tpa)]n (2), in the presence of isophthalic acid (H2ipa) and terephthalic acid (H2tpa), respectively, under solvothermal conditions. Topological analyses reveal that the crystal of complex 1 consists of a 3D threefold interpenetrating network with Schläfli symbol {65.8}, while complex 2 possesses a 2D wavelike layer structure with Schläfli symbol {66}. The photocatalytic properties of both complexes for the degradation of methyl violet have been explored, revealing that complex 2 is a better photocatalyst than 1. A mechanism for the photocatalytic properties of the complexes is proposed, based on the results of density of states (DOS) and partial DOS calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoon MY, Srirambalaji R, Kim K (2012) Chem Rev 112:1196

    Article  CAS  Google Scholar 

  2. Chen CC, Ma WH, Zhao JC (2010) Chem Soc Rev 39:4206

    Article  CAS  PubMed  Google Scholar 

  3. Wen T, Zhang DX, Zhang J (2013) Inorg Chem 52:12

    Article  CAS  PubMed  Google Scholar 

  4. Wang XL, Han N, Lin HY, Tian AX, Liu GC, Zhang JW (2014) Dalton Trans 43:2052

    Article  CAS  PubMed  Google Scholar 

  5. Zhang LN, Lu ST, Zhang C, Du CX, Hou HW (2015) CrystEngComm 17:846

    Article  CAS  Google Scholar 

  6. Wang FQ, Wang CM, Yu JC, Xu KH, Li XY, Fu YY (2016) Polyhedron 105:49

    Article  CAS  Google Scholar 

  7. Mu B, Li CX, Song M, Ren YL, Huang RD (2016) CrystEngComm 18:3086

    Article  CAS  Google Scholar 

  8. Liao ZL, Li GD, Bi MH, Chen JS (2008) Inorg Chem 47:11

    Article  CAS  Google Scholar 

  9. Guo J, Yang J, Liu YY, Ma JF (2012) CrystEngComm 14:6609

    Article  CAS  Google Scholar 

  10. Li HX, Zhang XY, Huo YN, Zhu J (2007) Environ Sci Technol 41:4410

    Article  CAS  PubMed  Google Scholar 

  11. Wang SB, Wang XC (2015) Small 11:3097

    Article  CAS  PubMed  Google Scholar 

  12. Gao YW, Li SM, Li YX, Yao LY, Zhang H (2017) Appl Catal B Environ 202:165

    Article  CAS  Google Scholar 

  13. Silva CG, Corma A, García A (2010) J Mater Chem 20:3141

    Article  CAS  Google Scholar 

  14. So MC, Wiederrecht GP, Mondloch JE, Huppand JT, Farha OK (2015) Chem Commun 51:3501

    Article  CAS  Google Scholar 

  15. Liu J, Wu J, Li F, Liu W, Li B, Wang J, Li Q, Yadav R, Kumar A (2016) RSC Adv 6:31161

    Article  CAS  Google Scholar 

  16. Jin JC, Wu XR, Luo ZD, Deng FY, Liu JQ, Singh A, Kumar A (2017) CrystEngComm 19:4368

    Article  CAS  Google Scholar 

  17. Wang J, Wu X, Liu J, Li B, Singh A, Kumar A, Batten SR (2017) CrystEngComm 19:3519

    Article  CAS  Google Scholar 

  18. Lu L, Wang J, Xie B, Liu J, Yadav R, Singh A, Kumar A (2017) New J Chem 41:3537

    Article  CAS  Google Scholar 

  19. Wang J, Bai C, Hu HM, Yuan F, Xue GL (2017) J Solid State Chem 249:87

    Article  CAS  Google Scholar 

  20. Sheldrick GM (2015) Acta Crystallogr Sect A Found Adv 71:3

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Lee CT, Yang WT, Parr RG (1998) Phys Rev B Condens Matter Mater Phys 37:785

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi, J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J W, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL,Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong WM, Gonzalez C, Pople JA (2009) Gaussian 09 revision B.01, Gaussian, Inc., WallingFord CT

  24. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839

    Article  CAS  PubMed  Google Scholar 

  25. Zhou HF, He T, Yue KF, Liu YL, Zhou CS, Yan N, Wang Y (2016) Cryst Growth Des 16:3961

    Article  CAS  Google Scholar 

  26. Hu JM, Guo R, Liu YG, Cui GH (2016) Inorg Chim Acta 450:418

    Article  CAS  Google Scholar 

  27. Mitkina TV, Zakharchuk NF, Naumov DY, Gerasko OA, Fenske D, Fedin VP (2008) Inorg Chem 47:6748

    Article  CAS  PubMed  Google Scholar 

  28. Britten J, Hearns NGR, Preuss KE, Richardson JF, Bin-Salamon S (2007) Inorg Chem 46:3934

    Article  CAS  PubMed  Google Scholar 

  29. Meng JX, Lu Y, Li YG, Fu H, Wang EB (2011) CrystEngComm 13:2479

    Article  CAS  Google Scholar 

  30. Guo J, Yang J, Liu YY, Ma JF (2012) CrystEngComm 14:6609

    Article  CAS  Google Scholar 

  31. Mahata P, Madras G, Natarajan S (2006) J Phys Chem B 110:13759

    Article  CAS  PubMed  Google Scholar 

  32. Gong Y, Li J, Qin J, Wu T, Cao R, Li J (2011) Cryst Growth Des 11:1662

    Article  CAS  Google Scholar 

  33. Wang CM, Wang FQ, Dong CF, Yu ZC, Wang ZC, Zhao YN, Li GD (2015) Z Anorg Allg Chem 641:1125

    Article  CAS  Google Scholar 

  34. Wang FQ, Dong CF, Wang ZC, Cui YR, Wang CM, Zhao YN, Li GD (2014) Eur J Inorg Chem 36:6239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial assistance from Sichuan University of Science and Engineering (Nos. 2015RC26, 2015RC29 and 2017RCL02), the Education Committee of Sichuan Province (Nos. 17ZA0264, 17ZB0312, 18ZB0422, 18ZB0425), the Project of Zigong Science and Technology (No. 2016HG06), the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (No. LYJ1705) and Innovative Entrepreneurial Training Plan of undergraduates in Guangdong Province (Nos. 201810571008, 201810571012, 201810571047, 201810571082, 201810571061, 201810571091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Lu, Bao-Hong Li or Abhinav Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Wang, J., Chen, F. et al. Structures and photocatalytic performance of two d10 metal-based coordination polymers containing mixed building units. Transit Met Chem 44, 107–114 (2019). https://doi.org/10.1007/s11243-018-0274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0274-9

Navigation