Transition Metal Chemistry

, Volume 43, Issue 6, pp 479–496 | Cite as

Enantiomeric pairs of copper(II) polypyridyl-alanine complex salts: anticancer studies

  • Pei Ying Ng
  • Soi Moi Chye
  • Yee Liang Tiong
  • Cheang Wei Chan
  • Kong Wai Tan
  • Ing Hong Ooi
  • Chew Hee Ng


The anticancer properties of two previously characterized pairs of optically pure chiral complex salts [Cu(phen)(ala)(H2O)]X·xH2O (phen = 1.10-phenanthroline; X = NO3; ala: l-alanine (l-ala) 1 and d-alanine (d-ala) 2; and (X = Cl; ala: l-ala, 3 and d-ala, 4; x = number of lattice water molecules) are reported herein, together with the crystal structure of the d-enantiomer 4. Unlike cisplatin which is ineffective against MCF-7 cancer cells with the absence of caspase-3 protein expression, these two pairs of complex salts were effective against this cell line and they were able to induce an increase in intracellular ROS, loss in mitochondrial membrane potential, cell cycle arrest mainly at SubG1 phase , caspase-9 activation, and caspase-3/caspase-7-independent apoptosis. Screening of 1 on the NCI-60 panel of human cancer cell lines showed that it was effective against most of the cell lines. MTT-NCI modified assay screening was also done on other cancer cell lines, viz. A549, CNE1, and HepG2, and two normal cell lines, viz. MCF-10A and CHANG. The effects of chirality of these Cu(II) compounds, especially the greater selectivity of d-enantiomers over the l-counterparts, on their anticancer properties are also reported herein.



The authors would like to thank the Malaysian Ministry of Science, Technology and Innovation (MOSTI) for the eScience Grant (No. 02-02-09-SF0036) used for sponsoring this research. Tan KW wished to thank Dr. Low Yun Yee for useful discussion on revising the cif file.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11243_2018_234_MOESM1_ESM.docx (616 kb)
Supplementary material 1 (DOCX 615 kb)


  1. 1.
    Romero MJ, Sadler PJ (2015) Chirality in organometallic anticancer complexes. In: Jaouen G, Salmain M (eds) Bioorganometallic chemistry: applications in drug discovery, biocatalysis, and imaging. Wiley, Hoboken, pp 85–116Google Scholar
  2. 2.
    Montaňa AM, Bernal FJ, Lorenzo J, Farnós C, Batalla C, Prieto MJ, Moreno V, Avilés FX, Mesas JM, Alegre NJ (2008) Synthesis, characterization and antiproliferative studies of the enantiomers of cis-[(1,2-camphordiamine)dichloro]platinum(II) complexes. Bioinorg Med Chem 16:1721–1737CrossRefGoogle Scholar
  3. 3.
    Kemp S, Wheate NJ, Buck DP, Nikac M, Collins JG, Aldrich-Wright JR (2007) The effect of ancillary ligand chirality and phenanthroline functional group substitution on the cytotoxicity of platinum-based metallointercalators. J Inorg Biochem 101:1049–1058CrossRefGoogle Scholar
  4. 4.
    Li Z, Niu M, Chang G, Changqiu Zhao C (2015) Chiral manganese(IV) complexes derived from Schiff base ligands: synthesis, characterization, in vitro cytotoxicity and DNA/BSA interaction. DNA, mononucleotides and cleavage activity. J Photochem Photobiol, B 153:473–482CrossRefGoogle Scholar
  5. 5.
    Gao F, Chao H, Jin-Quan Wang J-Q, Yuan Y-X, Sun B, Wei Y-F, Peng B, Ji L-N (2007) Targeting topoisomerase II with the chiral DNA-intercalating ruthenium(II) polypyridyl complexes. J Biol Inorg Chem 12:1015–1027CrossRefGoogle Scholar
  6. 6.
    Wang J-Q, Zhang P-Y, Qian C, Hou X-J, Ji L-N, Chao H (2014) Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells. J Biol Inorg Chem 19:335–348CrossRefGoogle Scholar
  7. 7.
    Kou J-F, Qian C, Wang J-Q, Chen X, Wang L-L, Chao H, Ji L-N (2012) Chiral ruthenium(II) anthraquinone complexes as dual inhibitors of topoisomerases I and II. J Biol Inorg Chem 17:81–96CrossRefGoogle Scholar
  8. 8.
    Abdel Latif El-Boraey H, Abdel Aleem El-Gokha A, El Tantawy El-SayedI, Ahmed Azzam M (2015) Transition metal complexes of a-aminophosphonates part I: synthesis, spectroscopic characterization, and in vitro anticancer activity of copper(II) complexes of α-aminophosphonates. Med Chem Res 24:2142–2153CrossRefGoogle Scholar
  9. 9.
    Li Z, Yan H, Chang G, Hong M, Dou J, Niu M (2016) Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: synthesis, characterization, cytotoxicity, protein and DNA-binding properties. J Photochem Photobiol, B 163:403–412CrossRefGoogle Scholar
  10. 10.
    Ng CH, Wang WS, Chong KV, Win YF, Neo KE, Lee HB, San SL, Abd Raja, Rahman RNZ, Leong WK (2013) Ternary copper(II)-polypyridyl enantiomers: aldol-type condensation, characterization, DNA-binding recognition, BSA-binding and anticancer property. Dalton Trans 42:10233–10243CrossRefGoogle Scholar
  11. 11.
    Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114:815–862CrossRefGoogle Scholar
  12. 12.
    Spreckelmeyer S, Orvig C, Casini A (2014) Cellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatin. Molecules 19:15584–15610CrossRefGoogle Scholar
  13. 13.
    Medici M, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Noble metals in medicine: latest advances. Coord Chem Rev 284:329–350CrossRefGoogle Scholar
  14. 14.
    Zaki M, Arjmand F, Tabassum S (2016) Current and future potential of metallo drugs: revisiting DNA-binding of metal containing molecules and their diverse mechanism of action. Inorg Chim Acta 444:1–22CrossRefGoogle Scholar
  15. 15.
    Allardyce CS, Dyson PJ (2016) Metal-based drugs that break the rules. Dalton Trans 45:3201–3209CrossRefGoogle Scholar
  16. 16.
    Gandin V, Trenti A, Porchia M, Tisato F, Giorgetti M, Zanusso I, Trevisia L, Marzano C (2015) Homoleptic phosphino copper (I) complexes with in vitro and in vivo dual cytotoxic and anti-angiogenic activity. Metallomics 7:1497–1507CrossRefGoogle Scholar
  17. 17.
    Denoyer D, Masaldan S, La Fontainea S, Cater MA (2015) Targeting copper in cancer therapy: ‘copper that cancer’. Metallomics 7:1459–1476CrossRefGoogle Scholar
  18. 18.
    Zhang P, Sadler PJ (2017) Redox-active metal complexes for anticancer therapy. Eur J Inorg Chem 2017:1541–1548CrossRefGoogle Scholar
  19. 19.
    Tisato F, Cristina Marzano C, Porchia M, Pellei M, Carlo Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Chem Rev 30:708–749Google Scholar
  20. 20.
    Ng CH, Chan CW, Lai JW, Ooi IH, Chong KV, Maah MJ, Seng HL (2016) Enantiomeric pair of copper(II) polypyridyl-alanine complexes: effect of chirality on their interaction with biomolecules. J Inorg Biochem 160:1–11CrossRefGoogle Scholar
  21. 21.
    Agilent (2014) CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, EnglandGoogle Scholar
  22. 22.
    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8CrossRefGoogle Scholar
  23. 23.
    Sheldrick GM (2008) Acta Cryst A64:112–122CrossRefGoogle Scholar
  24. 24.
    Farrugia LJ (2002) ORTEP-3 for windows-a version of ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr 30:565CrossRefGoogle Scholar
  25. 25.
    Shoemaker RH (2006) The NCI60 human tumor cell line anticancer drug screen. Nat Rev Cancer 6:813–823CrossRefGoogle Scholar
  26. 26.
    Chetana PR, Rao R, Roy M, Patra AK (2009) New ternary copper(II) complexes of l-alanine and heterocyclic bases: DNA binding and oxidative DNA cleavage activity. Inorg Chim Acta 362:4692–4698CrossRefGoogle Scholar
  27. 27.
    Hilchie AL, Haney EF, Pinto DM, Hancock Robert EW, Hoskin DW (2015) Enhanced killing of breast cancer cells by a d-amino acid analog of the winter flounder-derived pleurocidin NRC-03. Exp Mol Pathol 99:426–434CrossRefGoogle Scholar
  28. 28.
    Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, Kikuchi N, Satoh H, Tohru Sakamoto T, Hizawa N, Itoh K, Yamamoto M (2009) Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 15:3423–3432CrossRefGoogle Scholar
  29. 29.
    Liu LZ, Zhou XD, Qian G, Shi X, Fang J, Jiang BH (2007) AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K1 pathway. Cancer Res 67:6325–6332CrossRefGoogle Scholar
  30. 30.
    Slator C, Barron N, Howe O, Kellett A (2016) [Cu(o-phthalate)(phenanthroline)] exhibits unique superoxide-mediated nci-60 chemotherapeutic action through genomic DNA damage and mitochondrial dysfunction. ACS Chem Biol 11:159–171CrossRefGoogle Scholar
  31. 31.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Cancer Rev 13:714–726CrossRefGoogle Scholar
  32. 32.
    Ma P, Dong X-W, Swadley CL, Gupte A, Leggas M, Ledebur HC, Mumper RJ (2009) Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol 5:151–161CrossRefGoogle Scholar
  33. 33.
    WHO Cancer Factsheet (2017) Accessed 18 June 2017
  34. 34.
  35. 35.
    GLOBOCAN (2012) GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. International Agency for Research on Cancer, LyonGoogle Scholar
  36. 36.
    Healy E, Dempsey M, Lally C, Ryan MP (1998) Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int 54:1955–1966CrossRefGoogle Scholar
  37. 37.
    Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461CrossRefGoogle Scholar
  38. 38.
    Jin Y, Chen S, Duan J, Jia G, Zhang J (2015) Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage. J Inorg Biochem 146:28–36CrossRefGoogle Scholar
  39. 39.
    Suntharalingam K, Awuah SG, Bruno PM, Johnstone TC, Wang F, Lin Wei, Zheng Y-R, Page JE, Hemann MT, Lippard JS (2015) Necroptosis-inducing rhenium(V) oxo complexes. J Am Chem Soc 137:2967–2974CrossRefGoogle Scholar
  40. 40.
    You BR, Shin HR, Han BR, Kim SH, Park WH (2015) Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion. Mol Med Rep 11:1428–1434CrossRefGoogle Scholar
  41. 41.
    Al-anbaky Q, Al-karakooly Z, Kilaparty SP, Agrawal M, Albkuri YM, RanguMagar AB, Ghosh A, Ali N (2016) Cytotoxicity of manganese(III) complex in human breast adenocarcinoma cell line is mediated by the generation of reactive oxygen species followed by mitochondrial damage. Int J Toxicol 35:672–682CrossRefGoogle Scholar
  42. 42.
    Wu P, Zhu X, Jin W, Hao S, Liu Q, Zhang L (2015) Oxaliplatin triggers necrosis as well as apoptosis in gastric cancer SGC-7901 cells. Biochem Biophys Res Commun 460:183–190CrossRefGoogle Scholar
  43. 43.
    Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Moscow) 70:231–239CrossRefGoogle Scholar
  44. 44.
    Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35:24–32CrossRefGoogle Scholar
  45. 45.
    Kajstura M, Dorota Halicka H, Pryjma J, Zbigniew Darzynkiewicz Z (2007) Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete ‘‘Sub-G1’’ peaks on DNA content histograms. Cytometry Part A 71A:125–131CrossRefGoogle Scholar
  46. 46.
    Yarden RI, Metsuyanim S, Pickholtz I, Shabbeer S, Tellio H, Papa MZ (2012) BRCA1-dependent Chk1 phosphorylation triggers partial chromatin disassociation of phosphorylated Chk1 and facilitates S-phase cell cycle arrest. Int J Biochem Cell Biol 44:1761–1769CrossRefGoogle Scholar
  47. 47.
    Hoffmann K, Wiśniewska J, Wojtczak A, Sitkowskic J, Denslow A, Wietrzyk J, Jakubowski M, Łakomska I (2017) Rational design of dicarboxylato platinum(II) complexes with purine mimetic ligands as novel anticancer agents. J Inorg Biochem 172:34–45CrossRefGoogle Scholar
  48. 48.
    Rosário F, Hoet P, Santos C, Oliveira H (2016) Death and cell cycle progression are differently conditioned by the AgNP size in osteoblast-like cells. Toxicology 368–369:103–115CrossRefGoogle Scholar
  49. 49.
    Pratviel G (2012) Oxidative DNA damage mediated by transition metal ions and their complexes. Met Ions Life Sci 10:201–216CrossRefGoogle Scholar
  50. 50.
    Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W, Heffeter P (2011) Anticancer activity of metal complexes: involvement of redox processes. Antioxid Redox Signal 15:1085–1127CrossRefGoogle Scholar
  51. 51.
    Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116CrossRefGoogle Scholar
  52. 52.
    Pereira CV, Nadanaciva S, Oliveira PJ, Will Y (2012) The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin Drug Metab Toxicol 8:219–237CrossRefGoogle Scholar
  53. 53.
    Ngsa CH, Kong SM, Tiong TL, Maah MJ, Sukram N, Ahmad M, Khoo ASB (2014) Selective anticancer copper(II)-mixed ligand complexes: targeting of both ROS and proteasomes. Metallomics 6:892–906CrossRefGoogle Scholar
  54. 54.
    Banerjee K, Basu S, Das S, Sinha A, Biswas MK, Choudhuri SK (2016) Induction of intrinsic and extrinsic apoptosis through oxidative stress in drug-resistant cancer by a newly synthesized Schiff base copper chelate. Free Rad Res 50:426–446CrossRefGoogle Scholar
  55. 55.
    Fatfat M, Merhi RA, Rahal O, Stoyanovsky DA, Zaki A, Haidar H, Kagan VE, Gali-Muhtasib H, Machaca K (2014) Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer 14:527. CrossRefGoogle Scholar
  56. 56.
    Ganguly A, Basu S, Banerjee K, Chakraborty P, Sarkar A, Chatterjee M, Chaudhuri SK (2011) Redox active copper chelate overcomes multidrug resistance in T-lymphoblastic leukemia cell by triggering apoptosis. Mol BioSyst 7:1701–1712CrossRefGoogle Scholar
  57. 57.
    Daniel KG, Gupta P, Harbach RH, Guida WC, Ping Dou Q (2004) Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem Pharmacol 67:1139–1151CrossRefGoogle Scholar
  58. 58.
    Chew ST, Lo KM, Sinniah SK, Sim KS, Tan KW (2014) Synthesis, characterization and biological evaluation of cationic hydrazone copper complexes with diverse diimine co-ligands. RSC Adv 4:61232–61247CrossRefGoogle Scholar
  59. 59.
    Hecht F, Cazarin JM, Lima CE, Faria CC, da Costa Leitão AA, Ferreira ACF, Carvalho DDP, Fortunato RS (2016) Redox homeostasis of breast cancer lineages contributes to differential cell death response to exogenous hydrogen peroxide. Life Sci 158:7–13CrossRefGoogle Scholar
  60. 60.
    Wang N, Wu Y, Bian J, Qian X, Lin H, Sun H, You Q, Zhang X (2017) Current development of ROS-modulating agents as novel antitumor therapy. Curr Cancer Drug Targets 17:122–136CrossRefGoogle Scholar
  61. 61.
    Cossarizza A, Baccarani CM, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophs Res Commun 197:40–45CrossRefGoogle Scholar
  62. 62.
    Hada H, Honda C, Tanemura H (1977) Spectroscopic study on J-aggregate of cyanine dyes. 1. Spectral changes of UV bands concerned with J-aggregate formation. Photogr Sci Eng 21:83–91Google Scholar
  63. 63.
    Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486CrossRefGoogle Scholar
  64. 64.
    Smiley ST, Reers M, Hartshorn CM, Lin M, Chen A, Smith TW, Steele GD, Chen LB (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675CrossRefGoogle Scholar
  65. 65.
    Cossarizza A (2000) Mitochondria and apoptosis: functional studies on membrane potential (delta psi). Miner Biotechnol 12:57–61Google Scholar
  66. 66.
    Chen QY, Zhou DF, Huang J, Guo WJ, Gao J (2010) Synthesis, anticancer activities, interaction with DNA and mitochondria of manganese complexes. J Inorg Biochem 104:1141–1147CrossRefGoogle Scholar
  67. 67.
    Debatin K-M (2000) Activation of apoptosis pathways by anticancer treatment. Toxicol Lett 112–113:41–48CrossRefGoogle Scholar
  68. 68.
    Von ST, Hoi-Ling Seng HL, Lee HB, Ng SW, Kitamura Y, Chikira M, Ng CH (2012) DNA molecular recognition and cellular selectivity of anticancer metal(II) complexes of ethylenediaminediacetate and phenanthroline: multiple targets. J Biol Inorg Chem 17:57–69CrossRefGoogle Scholar
  69. 69.
    Kachadourian R, Brechbuh HM, Ruiz-Azuara L, Gracia-Mora I, Day BJ (2010) Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 268:176–183CrossRefGoogle Scholar
  70. 70.
    He S, Wang Lai, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137:1100–1111CrossRefGoogle Scholar
  71. 71.
    Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26:2215–2225CrossRefGoogle Scholar
  72. 72.
    Blanc C, Devereux QL, Krajewski S, Jänicke RU, Alan Porter G, John Reed C, Jaggi R, Marti A (2000) Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60:4386–4390Google Scholar
  73. 73.
    Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Tetsuya Toge T (2002) Current status of the molecular mechanisms of anticancer drug-induced apoptosis. Cancer Chemother Pharmacol 50:343–352CrossRefGoogle Scholar
  74. 74.
    Shakeri R, Kheirollahi A, Davoodi J (2017) Apaf-1: regulation and function in cell death. Biochime 135:111–125CrossRefGoogle Scholar
  75. 75.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489CrossRefGoogle Scholar
  76. 76.
    Ouyang L, Shi Z, Zhao S, Wang F-T, Zhou T-T, Liu B, Bao J-K (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498CrossRefGoogle Scholar
  77. 77.
    Devarajan E, Sahin AA, Jack Chen S, Krishnamurthy RR, Aggarwal N, Brun A-M, Sapino A, Zhang F, Sharma D, Yang X-H, Tora AD, Mehta K (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21:8843–8851CrossRefGoogle Scholar
  78. 78.
    Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 Is Required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360CrossRefGoogle Scholar
  79. 79.
    Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin-and etoposide-induced apoptosis. Cancer Res 61:348–354Google Scholar
  80. 80.
    Shin H-J, Kwon H-K, Lee J-H, Gui X, Achek A, Kim J-H, Choi S (2015) Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53. Nat Sci Rep 5:15798. CrossRefGoogle Scholar
  81. 81.
    Cepero V, García-Serrelde B, Moneo V, Blanco F, González-Vadillob AM, Álvarez-Valdésb A, Navarro-Ranninger C, Carnero A (2007) Trans-platinum(II) complexes with cyclohexylamine as expectator ligand induce necrosis in tumour cells by inhibiting DNA synthesis and RNA transcription. Clin Transl Oncol 9:521–530CrossRefGoogle Scholar
  82. 82.
    Tardito S, Bussolati O, Gaccioli F, Gatti R, Guizzardi S, Uggeri J, Marchio L, Lanfranchi M, Franchi-Gazzola R (2006) Non-apoptotic programmed cell death induced by a copper(II) complex in human fibrosarcoma cells. Histochem Cell Biol 126:473–482CrossRefGoogle Scholar
  83. 83.
    Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104CrossRefGoogle Scholar
  84. 84.
    Gottesman MM (2002) Mechanisms of drug resistance. Annu Rev Med 53:615–627CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
  2. 2.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.Pharmaceutical Chemistry Department, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia

Personalised recommendations