Transition Metal Chemistry

, Volume 43, Issue 5, pp 431–437 | Cite as

Synthesis, structure, magnetic and catalytic behavior of a dinuclear copper(II) complex with triazendio ligands

  • Su-ping Luo
  • Wen-xing Jiang
  • Shu-zhong Zhan


A dinuclear copper(II) complex [Cu2L4] has been prepared by the reaction of CuCl2·2H2O and 1-[(2-iodo)benzene]-3-[benzothiazole] triazene (HL). The complex has been characterized by X-ray crystallography and by physico-chemical and spectroscopic methods. In the solid state, there is a significant antiferromagnetic coupling between the copper(II) centers with a coupling constant (J) of − 558 cm−1. In homogeneous solution, the complex shows electrocatalytic activities for hydrogen generation from both acetic acid and neutral buffer with a turnover frequency of 50 mol of H2 per mole of catalyst per hour (mol H2/mol catalyst/h) at an overpotential (OP) of 941.6 mV, and 502 mol H2/mol catalyst/h at an OP of 836.7 mV.



This work was supported by the National Science Foundation of China (Nos. 20971045 and 21271073).

Supplementary material

11243_2018_230_MOESM1_ESM.doc (6 mb)
Supplementary material 1 (DOC 6180 kb)


  1. 1.
    Gan L, Groy TL, Tarakeshwar P, Mazinani SKS, Shearer J, Mujica V, Jones AK (2015) J Am Chem Soc 137:1109–1115CrossRefGoogle Scholar
  2. 2.
    Tang H, Hall MB (2017) J Am Chem Soc 139:18065–18070CrossRefGoogle Scholar
  3. 3.
    Tarai A, Baruah JB (2018) Cryst Growth Des 18:456–465CrossRefGoogle Scholar
  4. 4.
    Mohamed AA, Abdou HE, Fackler JP Jr (2006) Inorg Chem 45:11–13CrossRefGoogle Scholar
  5. 5.
    Nuricumbo-Escobar JJ, Campos-Alvarado C, Ríos-Moreno G, Morales-Morales D, Walsh PJ, Parra-Hake M (2007) Inorg Chem 46:6182–6189CrossRefGoogle Scholar
  6. 6.
    Barrett AGM, Crimmin MR, Hill MS, Hitchcock PB, Kociok-Kohn G, Procopiou PA (2008) Inorg Chem 47:7366–7376CrossRefGoogle Scholar
  7. 7.
    Rofouei MK, Hematyar M, Ghoulipour V, Gharamaleki JA (2009) Inorg Chim Acta 362:3777–3784CrossRefGoogle Scholar
  8. 8.
    Li W, Chen JY, Xu W-Q, He E-X, Zhan SZ, Cao DR (2011) Inorg Chem Commun 14:916–919CrossRefGoogle Scholar
  9. 9.
    Fang T, Zhou LL, Fu LZ, Zhan SZ, Lv QY (2015) Polyhedron 85:355–360CrossRefGoogle Scholar
  10. 10.
    Xue D, Luo SP, Chen YY, Zhang ZX, Zhan SZ (2017) Polyhedron 132:105–111CrossRefGoogle Scholar
  11. 11.
    Luo SP, Lei JM, Zhan SZ (2018) Inorg Chem Commun 90:45–50CrossRefGoogle Scholar
  12. 12.
    Reijerse EJ, Pham CC, Pelmenschikov V, Gilbert-Wilson R, Adamska-Venkatesh A, Siebel JF, Gee LB, Yoda Y, Tamasaku K, Lubitz W, Rauchfuss TB, Cramer SP (2017) J Am Chem Soc 139:4306–4309CrossRefGoogle Scholar
  13. 13.
    Ezzaher S, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2007) Inorg Chem 46:9863–9872CrossRefGoogle Scholar
  14. 14.
    Zhang YX, Lin CN, Zhan SZ (2016) J Coord Chem 69:2832–2844CrossRefGoogle Scholar
  15. 15.
    Xue D, Luo SP, Zhan SZ (2017) Chem Sel 2:8673–8678Google Scholar
  16. 16.
    Sheldrick GM (1996) SADABS: program for empirical absorption correction of area detector data. University of Götingen, GötingenGoogle Scholar
  17. 17.
    Sheldrick GM (2015) Acta Cryst C71:3–8Google Scholar
  18. 18.
    Rios-Moreno G, Aguirre G, Parra-Hake M, Walsh PJ (2003) Polyhedron 22:563–568CrossRefGoogle Scholar
  19. 19.
    Johnson AL, Willcocks AM, Richards SP (2009) Inorg Chem 48:8613–8622CrossRefGoogle Scholar
  20. 20.
    Rodriguez JG, Parra-Hake M, Aguirre G, Ortega F, Walsh PJ (1999) Polyhedron 18:3051–3055CrossRefGoogle Scholar
  21. 21.
    Corbett M, Hoskins BF, McLeod NJ, O’Day BP (1975) Aust J Chem 28:2377–2392CrossRefGoogle Scholar
  22. 22.
    de Meester P, Fletcher SR, Skapski AC (1973) Dalton Trans 2575–2578Google Scholar
  23. 23.
    Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley, New YorkGoogle Scholar
  24. 24.
    Bleaney B, Bowers KD (1952) Proc R Soc Lond Ser A 214:451–465CrossRefGoogle Scholar
  25. 25.
    Cao JP, Fang T, Wang ZQ, Ren YW, Zhan SZ (2014) J Mol Catal A Chem 391:191–197CrossRefGoogle Scholar
  26. 26.
    Fang T, Lu HX, Zhao JX, Zhan SZ, Lv QY (2015) J Mol Catal A Chem 396:304–309CrossRefGoogle Scholar
  27. 27.
    Zhou LL, Fu LZ, Tang LZ, Zhang YX, Zhan SZ (2015) Int J Hydrog Energy 40:5099–5105CrossRefGoogle Scholar
  28. 28.
    Karunadasa HI, Chang CJ, Long JR (2010) Nature 464:1329–1333CrossRefGoogle Scholar
  29. 29.
    Zhang YX, Lin CN, Zhan SZ (2016) J Coord Chem 69:2832–2844CrossRefGoogle Scholar
  30. 30.
    Li D, Lin CN, Zhan SZ, Ni CL (2017) Chin Chem Lett 28:1424–1428CrossRefGoogle Scholar
  31. 31.
    Fang T, Li W, Zhan SZ, Wei XL (2015) J Coord Chem 68:573–585CrossRefGoogle Scholar
  32. 32.
    Lin CN, Tang LZ, Ren ST, Ye LP, Chen CH, Zhan SZ (2017) Polyhedron 121:13–18CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations