Transition Metal Chemistry

, Volume 43, Issue 4, pp 331–338 | Cite as

Kinetics and mechanism of interactions of some monofunctional Au(III) complexes with sulphur nucleophiles

  • Snežana Radisavljević
  • Ana Đeković Kesić
  • Snežana Jovanović
  • Biljana Petrović


Kinetics of the substitution reactions between monofunctional Au(III) complexes, [Au(dien)Cl]2+, [Au(bpma)Cl]2+ and [Au(terpy)Cl]2+ (dien = 3-azapentane-1,5-diamine, bpma = di-(2-picolyl) amine, terpy = 2,2′;6′,2″-terpyridine), and biologically relevant sulphur ligands, namely glutathione (GSH), l-methionine (l-Met) and l-cysteine (l-Cys), were studied in 0.1 M HCl (pH = 1.0). The reactions were followed under pseudo-first-order conditions as a function of ligand concentration and temperature using stopped-flow spectrophotometry. The [Au(terpy)Cl]2+ complex proved to be more reactive than the [Au(bpma)Cl]2+ and [Au(dien)Cl]2+ complexes. The reactivities of the nucleophiles follow the same order for all three complexes, viz. l-Met > GSH > l-Cys. Values of the activation parameters of the reactions support an associative substitution mechanism. In order to confirm that these monofunctional Au(III) complexes undergo a single substitution process in strongly acidic medium, the reaction between [Au(terpy)Cl]2+ and l-Met was studied by HPLC. At pH = 1.0, only one reaction product was detected.



The authors gratefully acknowledge financial support from the Ministry of Science and Technological Development of the Republic of Serbia (Project No. 172011).

Supplementary material

11243_2018_221_MOESM1_ESM.docx (63 kb)
Supplementary material 1 (DOCX 62 kb)


  1. 1.
    Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P (2016) Coord Chem Rev 310:41CrossRefGoogle Scholar
  2. 2.
    Bernard C (2017) Johns Matthey Technol Rev 61:52CrossRefGoogle Scholar
  3. 3.
    Bugarčić ŽD, Bogojeski J, van Eldik R (2015) Coord Chem 292:91CrossRefGoogle Scholar
  4. 4.
    Ndagi U, Mhlongo N, Soliman ME (2017) Drug Des Dev Ther 11:599CrossRefGoogle Scholar
  5. 5.
    Jia P, Ouyang R, Cao P, Tong X, Zhou X, Lei T, Zhao Y, Guo N, Chang H, Miao Y, Zhou S (2017) J Coord Chem 70:2175CrossRefGoogle Scholar
  6. 6.
    Barnes KR, Lippard SJ (2004) Met Ions Biol Syst 42:143Google Scholar
  7. 7.
    Mangrum JB, Farrell NP (2010) Chem Commun 46:6640CrossRefGoogle Scholar
  8. 8.
    Ang WH, Casini A, Sava G, Dyson PJ (2011) J Organomet Chem 696:989CrossRefGoogle Scholar
  9. 9.
    Gianferrara T, Bratsos I, Alessio E (2009) Dalton Trans 37:7588CrossRefGoogle Scholar
  10. 10.
    Vessieres A, Top S, Beck W, Hillard E, Jaouen G (2006) Dalton Trans 28:529CrossRefGoogle Scholar
  11. 11.
    Tiekink ER (2008) Inflammopharmacology 16:138CrossRefGoogle Scholar
  12. 12.
    Ronconi L, Giovagnini L, Marzano C, Bettio F, Graziani R, Pilloni G, Fregona D (2005) Inorg Chem 44:1867CrossRefGoogle Scholar
  13. 13.
    Wang X, Guo Z (2008) Dalton Trans 12:1521CrossRefGoogle Scholar
  14. 14.
    Casini A, Hartinger C, Gabbiani C, Mini E, Dyson PJ, Keppler BL, Messori L (2008) J Inorg Biochem 102:564CrossRefGoogle Scholar
  15. 15.
    Milacic V, Chen D, Ronconi L, Landis-Piwowar KR, Fregona D, Ping Dou Q (2006) Cancer Res 66:10478CrossRefGoogle Scholar
  16. 16.
    Arsenijević N, Volarević V, Milovanović M, Bugarčić ŽD (2013) In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metalloproteins. Springer, HeidelbergGoogle Scholar
  17. 17.
    Marcon G, Messori L, Orioli P, Cinellu MA, Minghetti G (2003) Eur J Biochem 270:4655CrossRefGoogle Scholar
  18. 18.
    Messori L, Marcon M, Orioli P (2003) Bioinorg Chem Appl 1:177CrossRefGoogle Scholar
  19. 19.
    Ott I (2009) Coord Chem Rev 253:1670CrossRefGoogle Scholar
  20. 20.
    Best SI, Sadler PJ (1996) Gold Bull 29:87CrossRefGoogle Scholar
  21. 21.
    Wang Y, He QY, Che CM, Chiu JF (2006) Proteomics 6:131CrossRefGoogle Scholar
  22. 22.
    Đurović MD, Bugarčić ŽD, Heinemann FW, van Eldik R (2014) Dalton Trans 43:3911CrossRefGoogle Scholar
  23. 23.
    Nardin G, Randaccio L, Annibale G, Natile G, Pitteri B (1979) J Chem Soc Dalton Trans 15:220Google Scholar
  24. 24.
    Hollis LS, Lippard SJ (1983) J Am Chem Soc 105:4293CrossRefGoogle Scholar
  25. 25.
    Cao L, Jennings MC, Puddephat RJ (2007) Dalton Trans 46:1361Google Scholar
  26. 26.
    Smith RM, Martell AE (1989) Critical Stability Constants. Plenum Press, New YorkCrossRefGoogle Scholar
  27. 27.
    Tobe ML, Burgess J (1999) Inorganic Reaction Mechanisms. Addison Wesley, EssexGoogle Scholar
  28. 28.
    Wilkins RG (1991) Kinetics and Mechanism of Reactions of Transition Metal Complexes. Verlag, BerlinCrossRefGoogle Scholar
  29. 29.
    Pitteri B, Marangoni G, Viseutim FV, Cattalini L, Bobbo T (1998) Polyhedron 17:475CrossRefGoogle Scholar
  30. 30.
    Petrović BV, Djuran MI, Bugarčić ŽD (1999) Met-Based Drugs 6:355CrossRefGoogle Scholar
  31. 31.
    Jaganyi D, Hofmann A, van Eldik R (2001) Angew Chem Int Ed 40:1680CrossRefGoogle Scholar
  32. 32.
    Bugarčić ŽD, Petrović B, Zangrando E (2004) Inorg Chim Acta 357:2650CrossRefGoogle Scholar
  33. 33.
    Milovanović M, Đeković A, Volarević V, Petrović B, Arsenijević N, Bugarčić ŽD (2010) J Inorg Biochem 104:944CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Snežana Radisavljević
    • 1
  • Ana Đeković Kesić
    • 2
  • Snežana Jovanović
    • 1
  • Biljana Petrović
    • 1
  1. 1.Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  2. 2.Department of Chemical-Technological SciencesState University of Novi PazarNovi PazarSerbia

Personalised recommendations