Skip to main content
Log in

A green synthesis of biaryls in water catalyzed by palladium nanoparticles immobilized on N-amidinoglycine-functionalized iron oxide nanoparticles

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Fe3O4 nanoparticles were prepared by co-precipitation and coated with SiO2 following the Stöber process. N-Amidinoglycine amino acid was then covalently connected to provide an excellent ligand for the immobilization of Pd nanoparticles. The resulting material was characterized by FE-SEM, TEM, EDX, XRD, VSM and ICP-AES analysis. The Fe3O4@SiO2@N-amidinoglycine@Pd0 proved to be a highly active catalyst for the Suzuki coupling reactions of various aryl halides with substituted phenylboronic acids in water, giving the desired products in excellent yields for short reaction times. Moreover, this catalyst can be easily recovered by using an external magnet and directly reused for several times without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1

Similar content being viewed by others

References

  1. Lim CW, Lee IS (2010) Nano Today 5:412–434

    Article  CAS  Google Scholar 

  2. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Chem Rev 111:3036–3075

    Article  CAS  Google Scholar 

  3. Shylesh S, Schünemann V, Thiel WR (2010) Angew Chem Int Ed 49:3428–3459

    Article  CAS  Google Scholar 

  4. Tang T, Fan H, Ai S, Han R, Qiu Y (2011) Chemosphere 83:255–264

    Article  Google Scholar 

  5. Hu B, Pan J, Yu HL, Liu JW, Xu JH (2009) Process Biochem 44:1019–1024

    Article  CAS  Google Scholar 

  6. Gupta AK, Gupta M (2005) Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  7. Ln Wu, Yang CY, Lv Z, Cui FW, Zhao L, Yang P (2015) RSC Adv 5:50557–50564

    Article  Google Scholar 

  8. Ahmadi R, Ranjbarnodeh E, Gu N (2012) Mater Sci Poland 30:382–389

    Article  CAS  Google Scholar 

  9. Balu AM, Baruwati B, Serrano E, Cot J, Garcia-Martinez J, Varma RS, Luque R (2011) Green Chem 13:2750–2758

    Article  CAS  Google Scholar 

  10. Deng Y, Cai Y, Sun Z, Zhao D (2011) Chem Phys Lett 510:1–13

    Article  CAS  Google Scholar 

  11. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  12. Chekina N, Horak D, Jendelova P, Trchova M, Benes MJ, Hruby M, Herynek V, Turnovcova K, Sykova E (2011) J Mater Chem 21:7630–7639

    Article  CAS  Google Scholar 

  13. Yang J, Lee J, Kang J, Chung CH, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Nanotechnology 19:075610

    Article  Google Scholar 

  14. Stöber W, Fink A, Bohn EJ (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  15. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Nano Lett 2:183–186

    Article  CAS  Google Scholar 

  16. Graf C, Vossen DLJ, Imhof A, Van Blaaderen A (2003) Langmuir 19:6693–6700

    Article  CAS  Google Scholar 

  17. Qu H, Maa H, Zhou W, O’Connor CJ (2012) Inorg Chim Acta 389:60–65

    Article  CAS  Google Scholar 

  18. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2013) Colloids Surf B Biointerfaces 102:534–539

    Article  CAS  Google Scholar 

  19. Wang Z, Zhu H, Wang X, Yang F, Yang X (2009) Nanotechnology 20:465606–465615

    Article  Google Scholar 

  20. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  21. Bringmann G, Gulder T, Gulder TAM, Breuning M (2011) Chem Rev 111:563–639

    Article  CAS  Google Scholar 

  22. Wencel-Delord J, Panossian A, Leroux FR, Colobert F (2015) Chem Soc Rev 44:3418–3430

    Article  CAS  Google Scholar 

  23. Meyer FM, Collins JC, Borin B, Bradow J, Liras S, Limberakis C, Mathiowetz AM, Philippe L, Price D, Song K, James K (2012) J Org Chem 7:3099–3114

    Article  Google Scholar 

  24. Kappaun S, Slugovc C, List EJW (2008) Int J Mol Sci 9:1527–1547

    Article  CAS  Google Scholar 

  25. Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Chem Sus Chem 3:502–522

    Article  CAS  Google Scholar 

  26. Chatterjee A, Ward TR (2016) Catal Lett 146:820–840

    Article  CAS  Google Scholar 

  27. Liu X, Ma Z, Xing J, Liu H (2004) J Magn Magn Mater 270:1–6

    Article  CAS  Google Scholar 

  28. Sobhani S, Ghasemzadeh MS, Honarmand M, Zarifi F (2014) RSC Adv 4:44166–44174

    Article  CAS  Google Scholar 

  29. Ghorbani-Choghamarani A, Azadi G (2016) Appl Organomet Chem 30:247–252

    Article  CAS  Google Scholar 

  30. Veisi H, Ghadermazi M, Naderi A (2016) Appl Organomet Chem 30:341–345

    Article  CAS  Google Scholar 

  31. Yang P, Ma R, Bian F (2016) ChemCatChem 18:3746–3754

    Article  Google Scholar 

  32. Hajipour AR, Tadayoni NS, Mohammadsaleh F (2016) Appl Organomet Chem 30:777–782

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the partial financial support received from the research council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rafiee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, F., Mehdizadeh, N. A green synthesis of biaryls in water catalyzed by palladium nanoparticles immobilized on N-amidinoglycine-functionalized iron oxide nanoparticles. Transit Met Chem 43, 295–300 (2018). https://doi.org/10.1007/s11243-018-0215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0215-7

Navigation