Transition Metal Chemistry

, Volume 43, Issue 3, pp 201–209 | Cite as

A copper(II) complex of 6-(pyrazin-2-yl)-1,3,5-triazine-2,4-diamine and L-serinate: synthesis, crystal structure, DNA-binding and molecular docking studies



A water-soluble Cu(II) complex, [Cu(pzta)(L-Ser)(ClO4)]·1.5H2O (pzta = 6-(pyrazin-2-yl)-1,3,5-triazine-2,4-diamine; L-Ser = L-serinate), was synthesized and characterized by analytical and spectral techniques. In addition, the molecular structure of the complex was confirmed by single-crystal X-ray diffraction, revealing that the central Cu(II) atom was located in a six-coordinate distorted octahedral geometry. Multi-spectroscopic methods, viscosity measurements and thermal denaturation experiments revealed that the complex binds to DNA with apparent binding constant of 2.93 × 103 M−1 through a groove binding mode. The positive values of ΔH and ΔS obtained from isothermal titration calorimetry experiments indicated that hydrophobic interactions play an important role in the formation of the complex–DNA adduct. Molecular docking studies were carried out to better understand the binding mode of the complex with DNA.



We are grateful to the Program of Guangdong Provincial Science and Technology (2017A020208038) for generous financial support.


  1. 1.
    Jung YW, Lippard SJ (2007) Chem Rev 107:1387–1407CrossRefGoogle Scholar
  2. 2.
    Pizarro AM, Sadler PJ (2009) Biochimie 91:1198–1211CrossRefGoogle Scholar
  3. 3.
    Brissos RF, Caubet A, Gamez P (2015) Eur J Inorg Chem 2015:2633–2645CrossRefGoogle Scholar
  4. 4.
    Deo KM, Pages BJ, Ang DL, Gordon CP, Aldrich-Wright JR (2016) Int J Mol Sci 17:1818–1835CrossRefGoogle Scholar
  5. 5.
    Bruijnincx PCA, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206CrossRefGoogle Scholar
  6. 6.
    Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127CrossRefGoogle Scholar
  7. 7.
    Liang JX, Zhong HJ, Yang GJ, Vellaisamy K, Ma DL, Leung CH (2017) J Inorg Biochem. Google Scholar
  8. 8.
    Marzano C, Pellei M, Tisato F, Santini C (2009) Anti-Cancer Agents Med 9:185–211CrossRefGoogle Scholar
  9. 9.
    Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Chem Rev 114:815–862CrossRefGoogle Scholar
  10. 10.
    Brzozowski Z, Saczewski F, Gdaniec M (2000) Eur J Med Chem 12:1053–1064CrossRefGoogle Scholar
  11. 11.
    Duong A, Metivaud V, Maris T, Wuest JD (2011) Cryst Growth Des 11:2026–2034CrossRefGoogle Scholar
  12. 12.
    Duan RR, Wang L, Huo WQ, Chen S, Zhou XH (2014) Spectrochim Acta A 128:614–621CrossRefGoogle Scholar
  13. 13.
    Busto N, Valladolid J, Martinez-Alonso M, Lozano HJ, Jalon FA, Manzano BR, Rodriguez AM, Carrion MC, Biver T, Leal JM (2013) Inorg Chem 52:9962–9974CrossRefGoogle Scholar
  14. 14.
    Chen Y, Xu WC, Kou JF, Yu BL, Wei XH, Chao H, Ji LN (2010) Inorg Chem Commun 13:1140–1143CrossRefGoogle Scholar
  15. 15.
    Micskei K, Patonay T, Caglioti L, Palyi G (2010) Chem Biodivers 7:1660–1669CrossRefGoogle Scholar
  16. 16.
    Harada W, Nojima T, Shibayama A, Ueda H, Shindo H, Chikira M (1996) J Inorg Biochem 64:273–285CrossRefGoogle Scholar
  17. 17.
    Inci D, Aydın R, Yılmaz D, Gençkal HM, Vatan O, Çinkılıç N, Zorlu Y (2015) Spectrochim Acta A 136:761–770CrossRefGoogle Scholar
  18. 18.
    Zhang XM, Ou ZB, Chen S, Xiong YH, Zhou XH, Liu HF, Le XY (2012) J Chin Inorg Chem 28:2667–2673Google Scholar
  19. 19.
    Shen F, Ou ZB, Liu YJ, Liu W, Wang BF, Mao ZW, Le XY (2017) Inorg Chim Acta 465:1–13CrossRefGoogle Scholar
  20. 20.
    Fu XB, Liu DD, Lin Y, Hu W, Mao ZW, Le XY (2014) Dalton Trans 43:8721–8737CrossRefGoogle Scholar
  21. 21.
    Arjmand F, Aziz M, Chauhan M (2008) J Incl Phenom Macrocycl 61:265–278CrossRefGoogle Scholar
  22. 22.
    Chen ZJ, Chen YN, Xu CN, Zhao SS, Cao QY, Qian SS, Qin J, Zhu HL (2016) J Mol Struct 1117:293–299CrossRefGoogle Scholar
  23. 23.
    Tabassum S, Amir S, Arjmand F, Pettinari C, Marchetti F, Masciocchi N, Lupidi G, Pettinari R (2013) Eur J Med Chem 60:216–232CrossRefGoogle Scholar
  24. 24.
    Lian WJ, Wang XT, Xie CZ, Tian H, Song XQ, Pan HT, Qiao X, Xu JY (2016) Dalton Trans 45:9073–9087CrossRefGoogle Scholar
  25. 25.
    Subramanian PS, Suresh E, Dastidar P, Waghmode S, Srinivas D (2001) Inorg Chem 40:4291–4301CrossRefGoogle Scholar
  26. 26.
    Xu ZH, Chen FJ, Xi PX, Liu XH, Zeng ZZ (2008) J Photochem Photobiol 196:77–83CrossRefGoogle Scholar
  27. 27.
    Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058CrossRefGoogle Scholar
  28. 28.
    Jana SK, Mandal AK, Seth SK, Puschmann H, Hossain M, Dalai S (2016) J Inorg Organomet Polym 26:806–818CrossRefGoogle Scholar
  29. 29.
    Liu J, Zhang TX, Lu TB, Qu LH, Zhou H, Zhang QL, Ji LN (2002) J Inorg Biochem 91:269–276CrossRefGoogle Scholar
  30. 30.
    Haribabu J, Jeyalakshmi K, Arun Y, Bhuvanesh NSP, Perumalb PT, Karvembu R (2015) RSC Adv 5:46031–46049CrossRefGoogle Scholar
  31. 31.
    Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M (2015) Arch Biochem Biophys 576:49–60CrossRefGoogle Scholar
  32. 32.
    Ahmad I, Ahmad M (2015) Int J Biol Macromol 79:193–200CrossRefGoogle Scholar
  33. 33.
    Xiao Y, Wang Q, Huang YM, Ma XL, Xiong XN, Li H (2016) Dalton Trans 45:10928–10935CrossRefGoogle Scholar
  34. 34.
    Ricci CG, Netz PA (2009) J Chem Inf Model 49:1925–1935CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistrySouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.College of Materials and EnergySouth China Agricultural UniversityGuangzhouPeople’s Republic of China

Personalised recommendations